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- Goal: preparation of entangled state between qubit A1, B1, (C1, ...)
- Use qubits 2, 3, ... at each node as distillation resource

- Assume local control of qubits at each node

« Lossy channels between qubit pairs of different nodes

- Decoherence of each qubit into the vacuum mode of the EM field

- Star network of optomechanical
oscillators

- Output of each oscillator into
scatterer S

» Selective feedback (e.g.
common mode) from S into all
oscillators

- Optomechanical osciallators
exhibit bistability

» Network structure suppresses
common mode disturbance

= What are the limits on entanglement distribution in a realistically
modeled lossy network?
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