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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
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tains both the dc contribution Vgj
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!aj

2
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0 /" is the coupling
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the above resonator plus qubit Hamiltonian takes the usual
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FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".

BLAIS et al. PHYSICAL REVIEW A 75, 032329 !2007"

032329-2

Blais et al. PRA 75, 032329 (2007)

each qubit:
anharmonic ladder

coupled to cavity
(harmonic)

Full Hamiltonian

Ĥ = ωc â
†â + ω1b̂

†
1b̂1 + ω2b̂

†
2b̂2 +

α1

2
b̂
†
1b̂
†
1b̂1b̂1 +

α2

2
b̂
†
2b̂
†
2b̂2b̂2

+ g1(b̂
†
1â + b̂1â

†) + g2(b̂
†
2â + b̂2â

†) + ε∗(t)â + ε(t)â†

Logical basis: eigenstates of Ĥ (“dressed states”)



how should we choose system parameters?

ω1, ω2, ωc , α1, α2, g1, g2 – too many parameters to map out

physically relevant:

effective interaction in the dispersive limit

Ĥ ≈∑
q

(
ω̃qn̂q + ε(t)g eff(b̂q + b̂

†
q)
)
+ gg eff(b̂

†
1b̂2 + b̂1b̂

†
2);

g eff
q =

g

ωq − ωc

exploiting resonances

ω1 − ω2 ≈ α1 [BR: Poletto et al, PRL 109, 240505]

ω1 − ω2 ≈ 2α1 [MAP: Chow et al, NJP 15, 115012]

⇒ ω1 = 6 GHz, α1 = −290 MHz, α2 = −310 MHz, g = 70 MHz

vary: 4.5 < ωc < 11.0 GHz; 5.0 < ω2 < 7.5 GHz
Dissipation: τc = 3.2 µs, τq = 13.3 µs
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the parameter landscape

field-free entanglement
T = 50 ns

entangling gates:
choose ε(t) so that
C → 1

local gates:
choose ε(t) so that
C → 0

what is the speed
limit?
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What is numerical
optimal control

all about?
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numerical optimal control

solve equation of motion numerically

Û(dt) = e−iĤdt ⇒ expand in Chebychev Polynomials

E(dt) = e−iLdt ⇒ expand in Newton Polynomials

iteratively improve control ε(t) OCT

iteration
ε

propagation

∆ε
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gradient-free optimization

Take into account only evaluation of figure of merit.

structure. In particular the DMRG describes ground state
static properties of one-dimensional systems by means of a
matrix product state (MPS) [16]. The main characteristic of
a MPS is that the resources needed to describe a given
system depend only polynomially on the system size N,
due to the introduction of an ancillary dimension m that
determines the precision of the approximation. Since an
exact description requires exponentially increasing resour-
ces with the number of components N, the tensor network
approach results in an exponential gain in resources. Given
a system Hamiltonian, the best possible approximated
description of the system ground state—within the MPS
at fixed m—is determined by means of an efficient energy
minimization. With some slight modification, discretizing
the time T ¼ nsteps!t and performing a Trotter expansion,
the algorithm can be adapted to follow a state time evolu-
tion, the so-called tDMRG [13]. The tDMRG is a very
powerful numerical method for efficiently numerically
simulating the time evolution of one-dimensional many-
body quantum systems. The class of states and of time
evolutions that can be efficiently described with a small
error are determined by the presence of entanglement
between the different system components [12]. Here, we
will use the tDMRG for the simulation of cold atoms in
time-dependent optical lattices, which we feed into the
chopped random basis (CRAB) optimization algorithm as
described below.

CRAB method.—The general scenario of an optimal
control problem can be stated as follows: given a system
described by a Hamiltonian H depending on some control
parameters cjðtÞ with j ¼ 1; . . . ; NC, the goal is to find the
cj’s time dependence (pulse shape) that extremizes a given
figure of merit F , for instance, the final system energy,
state fidelity, or entanglement. We then start with an initial
pulse guess c0j ðtÞ and look for the best correction that has a
simple expression in a given functional basis. As an ex-
plicative example, here we focus on the case where the
correction is of the form cjðtÞ ¼ c0j ðtÞfjðtÞ, and the func-

tions fjðtÞ can be simply expressed in a truncated Fourier
space, depending on the expansion coefficients ~aj ¼ akj
(k ¼ 1; . . . ;Mj). In particular, in the following, we start
from an initial ansatz, e.g., an exponential or linear ramp,
and we introduce a correction of the form

fðtÞ ¼ 1

N

!
1þ

X

k

Ak sinð!ktÞ þ Bk cosð!ktÞ
"
: (1)

Here, k ¼ 1; . . . ;M, !k ¼ 2"kð1þ rkÞ=T are ‘‘rando-
mized’’ Fourier harmonics, T is the total time evolution,
rk 2 ½0:1& are random numbers with a flat distribution, and
N is a normalization constant to keep the initial and final
control pulse values fixed. The optimization problem is
then reformulated as the extremization of a multivariable
function F ðfAkg; fBkg; f!kÞg, which can be numerically
approached with a suitable method, e.g., steepest descent
or conjugate gradient [17]. When using CRAB together

with tDMRG, computing the gradient of F is extremely
resource consuming, if not impossible. Thus we resort to a
direct search method like the Nelder-Mead or Simplex
methods [17]. They are based on the construction of a
polytope defined by some initial set of points in the space
of parameters that ‘‘rolls down the hill’’ following prede-
fined rules until reaching a (possibly local) minimum (see
Fig. 1). Because of the fact that direct search methods are
based on many independent evaluations of the function to
be minimized, they can be efficiently implemented to-
gether with tDMRG simulations (and possibly performed
in parallel). We stress that the functional dependency of the
correction presented here [Eq. (1)] is one possible ap-
proach: different strategies might be explored. Indeed,
making a given choice confines the search of the optimal
driving field in a subspace of the whole space of functions
and the results might depend on this choice. On the other
hand, this approach simplifies the optimization problem
that would be otherwise computationally unfeasible when
tDMRG simulations are needed. As shown below, the
described choice allows us to perform a successful
optimization.
Optical-lattice system.—Very recently, the experimental

and theoretical analysis of the dynamics of cold atoms in
optical lattices has experienced a fast development, after
the experimental demonstration of coherent manipulation
of ultracold atoms in the seminal work of Ref. [18], where
a Bose-Einstein condensate is first loaded into a single
trap, and then a periodic lattice potential is slowly ramped
up, inducing a quantum phase transition to aMott insulator.
This is the enabling step for a wide range of experiments,
from transport or spectroscopy to quantum information
processing [19]. In most of these applications, it is essential
to achieve the lowest possible number of defects in the final
state, that is, to reach exactly a final state with fixed number
of atoms per site, e.g., unit filling. Up to now, this has been
pursued by limiting the process speed—the superfluid-
Mott insulator transition has been performed in about a
hundred milliseconds, with a density of defects typically of
the order of 10% [20].
Cold atoms in an optical lattice can be described by the

Bose-Hubbard model defined by the Hamiltonian [19,21]

FIG. 1 (color online). (a) An initial guess pulse c0ðtÞ is used as
a starting point. (b) The function F ð ~aÞ for the case ~a ¼ fa1; a2g
and the initial polytope (white triangle) are defined and moved
‘‘downhill’’ [darker gray (red) triangles] until convergence is
reached. (c) The final point is recast as the optimal pulse cðtÞ.

PRL 106, 190501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

190501-2

Doria et al. PRL 106, 190501 (2011)

e.g. Nelder-Mead (simplex), genetic algorithms. . .

advantages:

any figure of merit

easy to use in experiment

disadvantages:

only for low-dimensional
search space
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gradient-free optimization
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gradient-based optimization

Take into account derivative of figure of merit

gradient descent/LBFGS:
concurrent scheme,
needs ∂JT

∂ε

Krotov’s method:
sequential scheme,
needs ∂JT

∂〈Ψ|

Reich et al. JCP 136, 104103 (2012)

|00〉 Ô |00〉
|01〉 Ô |01〉
|10〉 Ô |10〉
|11〉 Ô |11〉

t0 T

∆ε ∼ ∂JT
∂ε

t

advantages:

fast convergence

high-dimensional search
space

disadvantages:

fig. of merit not arbitrary

numerically expensive
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hybrid optimization schemes

1 Start with analytical formula, optimize free parameter
with simplex

2 Use simplex-optimized control as starting point for
gradient-based method

100 101 102 103

OCT iteration
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Goerz et al. EPJ Quantum Tech. 2, 21 (2015)
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Optimizing quantum gates
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functionals for quantum gates

Hilbert space

JT = 1− 1

16

∣∣∣∣∣
4∑

i=1

〈
i
∣∣∣ Ô†Û ∣∣∣ i〉∣∣∣∣∣

2

; |i〉 ∈ {|00〉 , |01〉 , |10〉 , |11〉}

Liouville space ⇒ Goerz et al. NJP 16, 055012 (2014)

JT = 1−
3∑

i=1

wi

tr[ρ̂2
i ]
Re
{
tr
[
ρ̂tgt
i ρ̂i (T )

]}

ρ̂1 =
1

20


8 0 0 0
0 6 0 0
0 0 4 0
0 0 0 2

 , ρ̂2 =
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , ρ̂3 =
1

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


populations phases subspace

⇒ more advanced functionals
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quantum gates in the Weyl chamber

c1/π

0.0
0.2

0.4
0.6

0.8
1.0

c2/
π

0.0
0.1

0.2
0.3

0.4
0.5

c
3
/
π

0.0

0.1

0.2

0.3

0.4

0.5

Q

P

B

A3

A2

A1

ML
O

N

Cartan Decomposition

Û = k̂1 exp

[
i

2
(c1σ̂xσ̂x + c2σ̂y σ̂y + c3σ̂zσ̂z)

]
k̂2
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optimizing for an arbitrary perfect entangler
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gate duration duration (ns)
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⇒ Watts et al. PRA 91, 062306 (2015)

Goerz et al. PRA 91, 062307 (2015)
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Charting the transmon
parameter landscape
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procedure

At each point (ωc , ω1), for control ε(t) = E0B(t) cos(ωLt):

1 random search

J splx
PE = 1− C (1− εmin

pop), J splx
SQ = 1− (1− C )(1− εmin

pop)

2 gradient-free optimization (simplex)
pulse parameters E0, ωL

3 gradient-based optimization (Krotov’s method)
optimize in Weyl chamber for (a) arbitrary PE, and (b)
local gate

Evaluate success via Favg =
∫ 〈

Ψ
∣∣∣ Ô†Û ∣∣∣Ψ

〉
dΨ.

“Quality”: Q = 1
2

(
Favg(Ô=PE) + Favg(Ô=SQ)

)
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how well can we do local/entangling gates?
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how well can we do local/entangling gates?
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quantum speed limit for all-microwave control

101 102

gate time (ns)
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population dynamics for a perfect entangler

Michael Goerz • Kassel/Stanford/ARL • Charting the cQED Design Landscape using OCT 18 / 20

ω1 = ω2 = 6.0 GHz, ωc = 6.3 GHz

E0 = 215.7 MHz, ωL = 5.964 GHz ⇒ εavg = 1.3× 10−3



obtained gates
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summary & conclusion

Conclusions

Optimal control can be tool for systematic parameter
exploration

For transmon qubits with all microwave control, fastest
gates in non-dispersive regime

Universal quantum computing < 10 ns is possible
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