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quantum networks

generation and detection rates decrease exponentially with the
number of involved photons. Thus, the largest atom-photon
entangled state generated with an optical CQED system to
date still consists of only three constituents: an atom and two
photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
resonators with very low loss and photodetectors with very
high efficiency.

IV. QUANTUM COMMUNICATION AND QUANTUM
COMPUTATION IN COHERENT QUANTUM NETWORKS

The coupling of the atomic state to propagating photons, as
presented in Sec. III, facilitates the implementation of a
quantum network. To this end, the photons are coupled into
optical fibers and thus exchanged between the nodes. In the
following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
quantum networks of single atoms in optical cavities will be
described.
We start the discussion with atom-atom quantum-state

transfer and the generation of remote entanglement based
on photon storage at the second node. Although in practical
applications photon losses are always present, we call this
approach deterministic, as the achievable photon generation,
transmission, and absorption efficiencies can in principle be
arbitrarily close to unity in CQED setups. The situation is
different for the second approach which is based on two-
photon interference. Albeit this technique provides an intrinsic
herald, it has an upper bound of 50% efficiency, even with
perfect photon detectors (Calsamiglia and Lütkenhaus, 2001);
we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
Subsequently, the implementation of nondestructive photon

detection is described in Sec. IV.C. This technique opens up
interesting perspectives for the transmission of states over
large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum

information. Finally, first experiments toward the processing
of quantum information with a hybrid system of atoms and
photons are discussed in Sec. IV.D.

A. Deterministic distribution of quantum information

The deterministic approach toward the implementation of a
quantum network with atoms and photons (Cirac et al., 1997)
is based on the transmission of a single photon between the
two connected nodes A and B, as illustrated in Fig. 17. The
first experimental realization of this scheme (Ritter et al.,
2012) used two 87Rb atoms, trapped at a distance of 21 m in
Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
In the following, the different networking experiments

performed in this study will be described: First, the transfer
of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.

1. Quantum memory

The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
transition from the ground state jui to the excited state jei is
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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we therefore call it probabilistic. The first experimental
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detection is described in Sec. IV.C. This technique opens up
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large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum
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A. Deterministic distribution of quantum information

The deterministic approach toward the implementation of a
quantum network with atoms and photons (Cirac et al., 1997)
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Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
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of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.
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The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.
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The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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generation and detection rates decrease exponentially with the
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photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
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presented in Sec. III, facilitates the implementation of a
quantum network. To this end, the photons are coupled into
optical fibers and thus exchanged between the nodes. In the
following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
quantum networks of single atoms in optical cavities will be
described.
We start the discussion with atom-atom quantum-state
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on photon storage at the second node. Although in practical
applications photon losses are always present, we call this
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transmission, and absorption efficiencies can in principle be
arbitrarily close to unity in CQED setups. The situation is
different for the second approach which is based on two-
photon interference. Albeit this technique provides an intrinsic
herald, it has an upper bound of 50% efficiency, even with
perfect photon detectors (Calsamiglia and Lütkenhaus, 2001);
we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
Subsequently, the implementation of nondestructive photon

detection is described in Sec. IV.C. This technique opens up
interesting perspectives for the transmission of states over
large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum

information. Finally, first experiments toward the processing
of quantum information with a hybrid system of atoms and
photons are discussed in Sec. IV.D.
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The deterministic approach toward the implementation of a
quantum network with atoms and photons (Cirac et al., 1997)
is based on the transmission of a single photon between the
two connected nodes A and B, as illustrated in Fig. 17. The
first experimental realization of this scheme (Ritter et al.,
2012) used two 87Rb atoms, trapped at a distance of 21 m in
Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
In the following, the different networking experiments

performed in this study will be described: First, the transfer
of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.
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The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
transition from the ground state jui to the excited state jei is

Node BNode A

6µm

5

2

3

6µm

1

4

21m
Δ

ΩC
2g

Δ

Ω C 2g

FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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optical fibers and thus exchanged between the nodes. In the
following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
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described.
We start the discussion with atom-atom quantum-state
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on photon storage at the second node. Although in practical
applications photon losses are always present, we call this
approach deterministic, as the achievable photon generation,
transmission, and absorption efficiencies can in principle be
arbitrarily close to unity in CQED setups. The situation is
different for the second approach which is based on two-
photon interference. Albeit this technique provides an intrinsic
herald, it has an upper bound of 50% efficiency, even with
perfect photon detectors (Calsamiglia and Lütkenhaus, 2001);
we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
Subsequently, the implementation of nondestructive photon

detection is described in Sec. IV.C. This technique opens up
interesting perspectives for the transmission of states over
large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum

information. Finally, first experiments toward the processing
of quantum information with a hybrid system of atoms and
photons are discussed in Sec. IV.D.
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The deterministic approach toward the implementation of a
quantum network with atoms and photons (Cirac et al., 1997)
is based on the transmission of a single photon between the
two connected nodes A and B, as illustrated in Fig. 17. The
first experimental realization of this scheme (Ritter et al.,
2012) used two 87Rb atoms, trapped at a distance of 21 m in
Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
In the following, the different networking experiments

performed in this study will be described: First, the transfer
of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.

1. Quantum memory

The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
transition from the ground state jui to the excited state jei is
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
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we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
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transmission without affecting the encoded quantum
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photons are discussed in Sec. IV.D.

A. Deterministic distribution of quantum information

The deterministic approach toward the implementation of a
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two connected nodes A and B, as illustrated in Fig. 17. The
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2012) used two 87Rb atoms, trapped at a distance of 21 m in
Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
In the following, the different networking experiments

performed in this study will be described: First, the transfer
of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.

1. Quantum memory

The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
transition from the ground state jui to the excited state jei is
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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generation and detection rates decrease exponentially with the
number of involved photons. Thus, the largest atom-photon
entangled state generated with an optical CQED system to
date still consists of only three constituents: an atom and two
photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
resonators with very low loss and photodetectors with very
high efficiency.

IV. QUANTUM COMMUNICATION AND QUANTUM
COMPUTATION IN COHERENT QUANTUM NETWORKS

The coupling of the atomic state to propagating photons, as
presented in Sec. III, facilitates the implementation of a
quantum network. To this end, the photons are coupled into
optical fibers and thus exchanged between the nodes. In the
following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
quantum networks of single atoms in optical cavities will be
described.
We start the discussion with atom-atom quantum-state

transfer and the generation of remote entanglement based
on photon storage at the second node. Although in practical
applications photon losses are always present, we call this
approach deterministic, as the achievable photon generation,
transmission, and absorption efficiencies can in principle be
arbitrarily close to unity in CQED setups. The situation is
different for the second approach which is based on two-
photon interference. Albeit this technique provides an intrinsic
herald, it has an upper bound of 50% efficiency, even with
perfect photon detectors (Calsamiglia and Lütkenhaus, 2001);
we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
Subsequently, the implementation of nondestructive photon

detection is described in Sec. IV.C. This technique opens up
interesting perspectives for the transmission of states over
large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum

information. Finally, first experiments toward the processing
of quantum information with a hybrid system of atoms and
photons are discussed in Sec. IV.D.
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is based on the transmission of a single photon between the
two connected nodes A and B, as illustrated in Fig. 17. The
first experimental realization of this scheme (Ritter et al.,
2012) used two 87Rb atoms, trapped at a distance of 21 m in
Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
In the following, the different networking experiments

performed in this study will be described: First, the transfer
of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.

1. Quantum memory

The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
transition from the ground state jui to the excited state jei is
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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generation and detection rates decrease exponentially with the
number of involved photons. Thus, the largest atom-photon
entangled state generated with an optical CQED system to
date still consists of only three constituents: an atom and two
photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
resonators with very low loss and photodetectors with very
high efficiency.

IV. QUANTUM COMMUNICATION AND QUANTUM
COMPUTATION IN COHERENT QUANTUM NETWORKS

The coupling of the atomic state to propagating photons, as
presented in Sec. III, facilitates the implementation of a
quantum network. To this end, the photons are coupled into
optical fibers and thus exchanged between the nodes. In the
following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
quantum networks of single atoms in optical cavities will be
described.
We start the discussion with atom-atom quantum-state

transfer and the generation of remote entanglement based
on photon storage at the second node. Although in practical
applications photon losses are always present, we call this
approach deterministic, as the achievable photon generation,
transmission, and absorption efficiencies can in principle be
arbitrarily close to unity in CQED setups. The situation is
different for the second approach which is based on two-
photon interference. Albeit this technique provides an intrinsic
herald, it has an upper bound of 50% efficiency, even with
perfect photon detectors (Calsamiglia and Lütkenhaus, 2001);
we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
Subsequently, the implementation of nondestructive photon

detection is described in Sec. IV.C. This technique opens up
interesting perspectives for the transmission of states over
large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum

information. Finally, first experiments toward the processing
of quantum information with a hybrid system of atoms and
photons are discussed in Sec. IV.D.
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the discussion with the implementation of such a quantum
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quantum interface has been to transfer the state of a single
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Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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generation and detection rates decrease exponentially with the
number of involved photons. Thus, the largest atom-photon
entangled state generated with an optical CQED system to
date still consists of only three constituents: an atom and two
photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
resonators with very low loss and photodetectors with very
high efficiency.
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presented in Sec. III, facilitates the implementation of a
quantum network. To this end, the photons are coupled into
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following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
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described.
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transmission, and absorption efficiencies can in principle be
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we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
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the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.
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The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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generation and detection rates decrease exponentially with the
number of involved photons. Thus, the largest atom-photon
entangled state generated with an optical CQED system to
date still consists of only three constituents: an atom and two
photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
resonators with very low loss and photodetectors with very
high efficiency.

IV. QUANTUM COMMUNICATION AND QUANTUM
COMPUTATION IN COHERENT QUANTUM NETWORKS

The coupling of the atomic state to propagating photons, as
presented in Sec. III, facilitates the implementation of a
quantum network. To this end, the photons are coupled into
optical fibers and thus exchanged between the nodes. In the
following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
quantum networks of single atoms in optical cavities will be
described.
We start the discussion with atom-atom quantum-state

transfer and the generation of remote entanglement based
on photon storage at the second node. Although in practical
applications photon losses are always present, we call this
approach deterministic, as the achievable photon generation,
transmission, and absorption efficiencies can in principle be
arbitrarily close to unity in CQED setups. The situation is
different for the second approach which is based on two-
photon interference. Albeit this technique provides an intrinsic
herald, it has an upper bound of 50% efficiency, even with
perfect photon detectors (Calsamiglia and Lütkenhaus, 2001);
we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
Subsequently, the implementation of nondestructive photon

detection is described in Sec. IV.C. This technique opens up
interesting perspectives for the transmission of states over
large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum

information. Finally, first experiments toward the processing
of quantum information with a hybrid system of atoms and
photons are discussed in Sec. IV.D.

A. Deterministic distribution of quantum information

The deterministic approach toward the implementation of a
quantum network with atoms and photons (Cirac et al., 1997)
is based on the transmission of a single photon between the
two connected nodes A and B, as illustrated in Fig. 17. The
first experimental realization of this scheme (Ritter et al.,
2012) used two 87Rb atoms, trapped at a distance of 21 m in
Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
In the following, the different networking experiments

performed in this study will be described: First, the transfer
of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.

1. Quantum memory

The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
transition from the ground state jui to the excited state jei is
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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generation and detection rates decrease exponentially with the
number of involved photons. Thus, the largest atom-photon
entangled state generated with an optical CQED system to
date still consists of only three constituents: an atom and two
photons (Reiserer et al., 2014). Increasing the number of
entangled photons by an order of magnitude requires both
resonators with very low loss and photodetectors with very
high efficiency.

IV. QUANTUM COMMUNICATION AND QUANTUM
COMPUTATION IN COHERENT QUANTUM NETWORKS

The coupling of the atomic state to propagating photons, as
presented in Sec. III, facilitates the implementation of a
quantum network. To this end, the photons are coupled into
optical fibers and thus exchanged between the nodes. In the
following, experiments that demonstrate the basic concepts to
distribute and process quantum information in elementary
quantum networks of single atoms in optical cavities will be
described.
We start the discussion with atom-atom quantum-state

transfer and the generation of remote entanglement based
on photon storage at the second node. Although in practical
applications photon losses are always present, we call this
approach deterministic, as the achievable photon generation,
transmission, and absorption efficiencies can in principle be
arbitrarily close to unity in CQED setups. The situation is
different for the second approach which is based on two-
photon interference. Albeit this technique provides an intrinsic
herald, it has an upper bound of 50% efficiency, even with
perfect photon detectors (Calsamiglia and Lütkenhaus, 2001);
we therefore call it probabilistic. The first experimental
implementations are presented in Sec. IV.B.
Subsequently, the implementation of nondestructive photon

detection is described in Sec. IV.C. This technique opens up
interesting perspectives for the transmission of states over
large distances, as it can be used to herald successful photon
transmission without affecting the encoded quantum

information. Finally, first experiments toward the processing
of quantum information with a hybrid system of atoms and
photons are discussed in Sec. IV.D.

A. Deterministic distribution of quantum information

The deterministic approach toward the implementation of a
quantum network with atoms and photons (Cirac et al., 1997)
is based on the transmission of a single photon between the
two connected nodes A and B, as illustrated in Fig. 17. The
first experimental realization of this scheme (Ritter et al.,
2012) used two 87Rb atoms, trapped at a distance of 21 m in
Fabry-Perot resonators in the intermediate coupling regime
with C≃ 1.
In the following, the different networking experiments

performed in this study will be described: First, the transfer
of the atomic state from one node to the other is explained in
Sec. IV.A.2. Then, the generation of entanglement between
the nodes is discussed in Sec. IV.A.3.
The used scheme requires that the nodes operate as

bidirectional quantum interfaces that can both send and
receive quantum information. In addition, the nodes must
store quantum states for a time that is sufficient to exchange a
photon between them. These requirements basically mean that
the nodes should operate as a quantum memory for single
photons (Lvovsky, Sanders, and Tittel, 2009). Thus, we start
the discussion with the implementation of such a quantum
memory with a single atom.

1. Quantum memory

The first step toward the implementation of a bidirectional
quantum interface has been to transfer the state of a single
atom onto that of a single photon (Wilk, Webster, Kuhn, and
Rempe, 2007), as discussed in Sec. III.C. We briefly recall that
toward this goal, adiabatic control of a coherent Raman dark
state is employed. The system is prepared in the state ju; 0i
and the intensity of an external control laser that couples the
transition from the ground state jui to the excited state jei is
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FIG. 17 (color online). An elementary cell of a quantum network that consists of single atoms in optical cavities. An optical fiber
(1) connects two independent setups that are separated by 21 m. In both setups, a single atom (2) is trapped in a Fabry-Perot
resonator (3). The insets show typical fluorescence images. Quantum states are exchanged between the atoms in the form of a single
photon (4). To this end, an atomic coherent dark state is controlled with two external laser fields (5). Increasing the field intensity at
node A transfers the atomic state to the state of the photon, while decreasing it performs the reverse operation at node B. Adapted from
Ritter et al., 2012.
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Ĥ =
N∑
i=1

Ĥ
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quantum jump method (MCWF)

see Dum et al. PRA 4879 (1992); Mølmer et al. JOSAB 10, 524 (1993)

1 non-Hermitian effective Hamiltonian Ĥeff = Ĥ +
∑

l L̂
†
l L̂l

2 random number r ∈ [0, 1);
propagate until |Ψk(t)|2 = r .

3 choose L̂l with relative probability 〈L̂†l L̂l〉Ψk
;

instantaneous jump |Ψk(t)〉 → L̂l |Ψk(t)〉 (normalized)

4 new random number r ∈ [0, 1) and continue the
propagation.

5 normalize any resulting |Ψk(t)〉

trajectory averaging:
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;

instantaneous jump |Ψk(t)〉 → L̂l |Ψk(t)〉 (normalized)

4 new random number r ∈ [0, 1) and continue the
propagation.

5 normalize any resulting |Ψk(t)〉

trajectory averaging:

ρ̂ = lim
M→∞

1

M

M∑
k=1

|Ψk〉〈Ψk |
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Node 1 Node 2 Node N

κ . . .

. . .

. . .

Dicke state: distribute a fixed excitation number over all nodes

for single excitation:

|10 . . . 0〉 → 1√
N

(|10 . . . 0〉+ |01 . . . 0〉+ · · ·+ |00 . . . 1〉)
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optimal control problem

find control fields u1(t) . . . uN(t)
that drive |Ψ(0)〉 → |Ψ(T )〉 = |Ψ〉tgt

minimize JT = 1−
〈〈
ρ̂(T )

∣∣P̂tgt

〉〉



gradient optimization

minimize JT = 1−
〈〈
ρ̂(T )

∣∣P̂tgt

〉〉

GRAPE/LBFGS Khaneja et al, JMR 172, 296 (2005)

on time grid: uij = ui (tj); Ej = E(tj , tj−1)

∆uij ∝
∂JT
∂uij

= −
〈〈

P̂
(0)

(tj)

∣∣∣∣ ∂Ej∂uij

∣∣∣∣ρ̂(0)(tj−1)

〉〉
,

Krotov’s method Reich et al, JCP 136, 104103 (2012)

aux. functional J = JT +
∑

i
λi

Si (t)

∫ T
0 [u

(1)
i (t)− u

(0)
i (t)]2 dt

∆ui (t) =
Si (t)

λi

〈〈
P̂

(0)
(t)

∣∣∣∣ ∂L
∂ui (t)

∣∣∣∣ρ̂(1)(t)

〉〉
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optimize using quantum trajectories?
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JT = 1−
〈〈
ρ̂(T )

∣∣P̂tgt

〉〉
←− ρ̂ = lim

M→∞

1

M

M∑
k=1

|Ψk〉〈Ψk |
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JT = 1− lim
M→∞

1

M

M∑
k=1

∣∣ 〈Ψk(T ) |Ψtgt〉︸ ︷︷ ︸
≡τk

∣∣2
GRAPE/LBFGS

∂JT
uij

= − lim
M→∞

1

M

M∑
k=1

[
∂τk
∂uij

τ∗k + τk

(
∂τk
∂uij

)∗]
∂τk
uij

=

〈
Ψ

(0)
tgt(tj)

∣∣∣∣∣ ∂Ûjk

∂uij

∣∣∣∣∣Ψ
(0)
k (t)j−1)

〉
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(0)
tgt(tj)

∣∣∣∣∣ ∂Ûjk

∂uij

∣∣∣∣∣Ψ
(0)
k (tj−1)

〉

Krotov’s method Palao, Kosloff, PRA 68, 062308 (2003).

∆ui (t) =
Si (t)

Mλi

M∑
k=1

Im
〈
χ

(0)
k (t)

∣∣∣ Ĥi

∣∣∣Ψ
(1)
k (t)

〉
︸ ︷︷ ︸

≡∆uik (t)

,

with χ
(0)
k (T ) = − ∂JT

∂〈Ψk | = τ
(0)
k |Ψtgt〉
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How does time required
to generate Dicke state
scale with network size?
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How does time required
to generate Dicke state
scale with network size?

⇒ single trajectory allows to determine speed limit
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cross-trajectory optimization

Krotov’s method (in Liouville space)

∆ui(t) =
Si(t)

λi

〈〈
P̂

(0)
(t)

∣∣∣∣ ∂L
∂ui(t)

∣∣∣∣ρ̂(1)(t)

〉〉

ρ̂ = lim
M→∞

1

M

M∑
k=1

|Ψk〉〈Ψk |

"
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cross-trajectory optimization

Krotov’s method (in Liouville space)

∆ui(t) =
Si(t)

M2λi

M∑
k,k ′=1

Im
[ 〈
ξ

(0)
k (t)

∣∣∣ Ĥi

∣∣∣Ψ
(1)
k ′ (t)

〉
×
〈

Ψ
(1)
k ′ (t)

∣∣∣ ξ(0)
k (t)

〉]

with P̂
(0)

(t) = lim
M→∞

1

M
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parallelization approaches

MPI OpenMP

scalable compute nodes,
expensive data exchange

limited cores,
shared data (cheap)
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hybrid parallelization of trajectory optimization

Krotov’s method
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∣∣∣Ψ
(1)
k ′ (t)

〉
×
〈

Ψ
(1)
k ′ (t)

∣∣∣ ξ(0)
k (t)

〉]

sending update ∆ui(t) is cheap

sending states |ξk〉, |Ψk ′〉 is expensive

⇒ proposal:
only cross-reference trajectories k , k ′ that are local
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