Efficient Numerical Optimization via Quantum Trajectories

Michael Goerz

Stanford University / Army Research Lab

Gordon Research Conference Quantum Control of Light & Matter

> Mount Holyoke College August 6, 2017

applications of networks

applications of networks

secure qu. communication

from: Reiserer, Rempe. RMP 87, 1379 (2015)

applications of networks

- secure qu. communication
- distributed qu. computing

from: Reiserer, Rempe. RMP 87, 1379 (2015)

applications of networks

- secure qu. communication
- distributed qu. computing
- distributed qu. metrology

from: Reiserer, Rempe. RMP 87, 1379 (2015)

applications of networks

- secure qu. communication
- distributed qu. computing
- distributed qu. metrology

network advantages: scaling, robustness, security

from: Reiserer, Rempe. RMP 87, 1379 (2015)

applications of networks

- secure qu. communication
- distributed qu. computing
- distributed qu. metrology

network advantages: scaling, robustness, security

from: Reiserer, Rempe. RMP 87, 1379 (2015)

applications of networks

- secure qu. communication
- distributed qu. computing
- distributed qu. metrology

network advantages: scaling, robustness, security

control challenges

node-link interfaces

from: Reiserer, Rempe. RMP 87, 1379 (2015)

applications of networks

- secure qu. communication
- distributed qu. computing
- distributed qu. metrology

network advantages: scaling, robustness, security

- node-link interfaces
- entanglement creation & distribution

from: Reiserer, Rempe. RMP 87, 1379 (2015)

applications of networks

- secure qu. communication
- distributed qu. computing
- distributed qu. metrology

network advantages: scaling, robustness, security

- node-link interfaces
- entanglement creation & distribution
- signal routing

from: Reiserer, Rempe. RMP 87, 1379 (2015)

applications of networks

- secure qu. communication
- distributed qu. computing
- distributed qu. metrology

network advantages: scaling, robustness, security

- node-link interfaces
- entanglement creation & distribution
- signal routing
- local processing

single node: $\hat{\mathbf{H}}^{(1)} = \hat{\mathbf{H}}_0^{(1)}$ $+ u_1(t) \left(\hat{\boldsymbol{\sigma}}_{eg} \otimes \hat{\mathbf{a}}_1^{\dagger} + \text{c.c.} \right)$ $\hat{\mathbf{L}}^{(1)} = \sqrt{2\kappa} \hat{\mathbf{a}}_1$

cf. Cirac et al, PRL 78, 3221 (1997)

SLH formalism (Gough, James):

 $\{(\hat{\mathbf{H}}^{(i)}, \{\hat{\mathbf{L}}^{(i)}\})\}$ of nodes $\rightarrow (\hat{\mathbf{H}}, \{\hat{\mathbf{L}}\})$ of network

SLH formalism (Gough, James):

 $\{(\boldsymbol{\hat{H}}^{(i)},\{\boldsymbol{\hat{L}}^{(i)}\})\}$ of nodes $\rightarrow(\boldsymbol{\hat{H}},\{\boldsymbol{\hat{L}}\})$ of network

QNET: computer (quantum) algebra software https://github.com/mabuchilab/QNET

Hilbert space dimension exponential with N

$$\mathbf{\hat{H}} = \sum_{i=1}^{N} \mathbf{\hat{H}}^{(i)} + \sum_{i \neq j} i \kappa \mathbf{\hat{a}}_{i}^{\dagger} \mathbf{\hat{a}}_{j} + \text{c.c}; \qquad \mathbf{\hat{L}} = \sqrt{2\kappa} \sum_{i=1}^{N} \mathbf{\hat{a}}_{i}$$

Hilbert space dimension exponential with N

 \blacksquare node-node interaction and decay both $\propto \kappa$

$$\mathbf{\hat{H}} = \sum_{i=1}^{N} \mathbf{\hat{H}}^{(i)} + \sum_{i \neq j} \mathrm{i}\kappa \mathbf{\hat{a}}_{i}^{\dagger} \mathbf{\hat{a}}_{j} + \mathrm{c.c}; \qquad \mathbf{\hat{L}} = \sqrt{2\kappa} \sum_{i=1}^{N} \mathbf{\hat{a}}_{i}$$

- Hilbert space dimension exponential with N
- node-node interaction and decay both $\propto \kappa$ \Rightarrow dark state $\langle \Psi | \hat{\mathbf{L}}^{\dagger} \hat{\mathbf{L}} | \Psi \rangle = 0$

see Dum et al. PRA 4879 (1992); Mølmer et al. JOSAB 10, 524 (1993)

1 non-Hermitian effective Hamiltonian $\hat{\mathbf{H}}_{eff} = \hat{\mathbf{H}} + \sum_{l} \hat{\mathbf{L}}_{l}^{\dagger} \hat{\mathbf{L}}_{l}$

- **1** non-Hermitian effective Hamiltonian $\hat{\mathbf{H}}_{\mathsf{eff}} = \hat{\mathbf{H}} + \sum_{l} \hat{\mathbf{L}}_{l}^{\dagger} \hat{\mathbf{L}}_{l}$
- 2 random number $r \in [0, 1)$; propagate until $|\Psi_k(t)|^2 = r$.

- **1** non-Hermitian effective Hamiltonian $\mathbf{\hat{H}}_{\mathsf{eff}} = \mathbf{\hat{H}} + \sum_{l} \mathbf{\hat{L}}_{l}^{\dagger} \mathbf{\hat{L}}_{l}$
- 2 random number $r \in [0, 1)$; propagate until $|\Psi_k(t)|^2 = r$.
- 3 choose $\hat{\mathbf{L}}_l$ with relative probability $\langle \hat{\mathbf{L}}_l^{\dagger} \hat{\mathbf{L}}_l \rangle_{\Psi_k}$; instantaneous jump $|\Psi_k(t)\rangle \rightarrow \hat{\mathbf{L}}_l |\Psi_k(t)\rangle$ (normalized)

- **1** non-Hermitian effective Hamiltonian $\hat{\mathbf{H}}_{eff} = \hat{\mathbf{H}} + \sum_{l} \hat{\mathbf{L}}_{l}^{\dagger} \hat{\mathbf{L}}_{l}$
- 2 random number $r \in [0, 1)$; propagate until $|\Psi_k(t)|^2 = r$.
- 3 choose $\hat{\mathbf{L}}_l$ with relative probability $\langle \hat{\mathbf{L}}_l^{\dagger} \hat{\mathbf{L}}_l \rangle_{\Psi_k}$; instantaneous jump $|\Psi_k(t)\rangle \rightarrow \hat{\mathbf{L}}_l |\Psi_k(t)\rangle$ (normalized)
- 4 new random number $r \in [0, 1)$ and continue the propagation.

- **1** non-Hermitian effective Hamiltonian $\hat{\mathbf{H}}_{eff} = \hat{\mathbf{H}} + \sum_{l} \hat{\mathbf{L}}_{l}^{\dagger} \hat{\mathbf{L}}_{l}$
- 2 random number $r \in [0, 1)$; propagate until $|\Psi_k(t)|^2 = r$.
- 3 choose $\hat{\mathbf{L}}_l$ with relative probability $\langle \hat{\mathbf{L}}_l^{\mathsf{T}} \hat{\mathbf{L}}_l \rangle_{\Psi_k}$; instantaneous jump $|\Psi_k(t)\rangle \rightarrow \hat{\mathbf{L}}_l |\Psi_k(t)\rangle$ (normalized)
- 4 new random number $r \in [0, 1)$ and continue the propagation.
- **5** normalize any resulting $|\Psi_k(t)\rangle$

see Dum et al. PRA 4879 (1992); Mølmer et al. JOSAB 10, 524 (1993)

- **1** non-Hermitian effective Hamiltonian $\hat{\mathbf{H}}_{eff} = \hat{\mathbf{H}} + \sum_{l} \hat{\mathbf{L}}_{l}^{\dagger} \hat{\mathbf{L}}_{l}$
- 2 random number $r \in [0, 1)$; propagate until $|\Psi_k(t)|^2 = r$.
- 3 choose $\hat{\mathbf{L}}_{l}$ with relative probability $\langle \hat{\mathbf{L}}_{l}^{\mathsf{T}} \hat{\mathbf{L}}_{l} \rangle_{\Psi_{k}}$; instantaneous jump $|\Psi_{k}(t)\rangle \rightarrow \hat{\mathbf{L}}_{l} |\Psi_{k}(t)\rangle$ (normalized)
- 4 new random number $r \in [0, 1)$ and continue the propagation.
- **5** normalize any resulting $|\Psi_k(t)\rangle$

trajectory averaging:

$$oldsymbol{\hat{
ho}} = \lim_{M o \infty} rac{1}{M} \sum_{k=1}^{M} \ket{\Psi_k}ig\langle \Psi_k
ight|$$

Dicke state: distribute a fixed excitation number over all nodes

Dicke state: distribute a fixed excitation number over all nodes for single excitation:

$$|10\ldots0
angle
ightarrow rac{1}{\sqrt{N}}\left(|10\ldots0
angle+|01\ldots0
angle+\cdots+|00\ldots1
angle
ight)$$

optimal control problem

find control fields
$$u_1(t) \dots u_N(t)$$

that drive $|\Psi(0)\rangle \rightarrow |\Psi(T)\rangle = |\Psi\rangle_{tgt}$

optimal control problem

find control fields
$$u_1(t) \dots u_N(t)$$

that drive $|\Psi(0)\rangle \rightarrow |\Psi(T)\rangle = |\Psi\rangle_{
m tgt}$

minimize
$$J_{\mathcal{T}} = 1 - \langle\!\langle \hat{\boldsymbol{\rho}}(\mathcal{T}) \big| \hat{\mathbf{P}}_{\mathsf{tgt}} \rangle\!\rangle$$

minimize
$$J_T = 1 - \left\langle\!\left\langle \hat{\boldsymbol{\rho}}(T) \middle| \hat{\boldsymbol{P}}_{\text{tgt}} \right\rangle\!\right\rangle$$

minimize
$$J_{\mathcal{T}} = 1 - \left<\!\!\left< \hat{oldsymbol{\rho}}(\mathcal{T}) \middle| \hat{oldsymbol{P}}_{ ext{tgt}} \right>\!\!\left>$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

$$\mathsf{minimize} \qquad J_{\mathcal{T}} = 1 - \left\langle\!\left\langle oldsymbol{\hat{
ho}}(\mathcal{T}) \middle| oldsymbol{\hat{\mathsf{P}}}_{\mathsf{tgt}}
ight
ight
angle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [u_i^{(1)}(t) - u_i^{(0)}(t)]^2 dt$$

$$\Delta u_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\left\langle \mathbf{\hat{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial u_i(t)} \middle| \mathbf{\hat{\rho}}^{(1)}(t) \right\rangle\!\!\right\rangle$$

minimize
$$J_{\mathcal{T}} = 1 - \left\langle\!\left\langle \hat{oldsymbol{\rho}}(\mathcal{T}) \middle| \hat{oldsymbol{P}}_{ ext{tgt}}
ight
angle\!
ight
angle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [u_i^{(1)}(t) - u_i^{(0)}(t)]^2 dt$$
$$\Delta u_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial u_i(t)} \middle| \hat{\boldsymbol{\rho}}^{(1)}(t) \right\rangle\!\!\!\right\rangle$$

$$\mathsf{minimize} \qquad J_{\mathcal{T}} = 1 - \left\langle\!\left\langle oldsymbol{\hat{
ho}}(\mathcal{T}) \middle| oldsymbol{\hat{\mathsf{P}}}_{\mathsf{tgt}}
ight
ight
angle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [\boldsymbol{u}_i^{(1)}(t) - \boldsymbol{u}_i^{(0)}(t)]^2 dt$$
$$\Delta \boldsymbol{u}_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial \boldsymbol{u}_i(t)} \middle| \hat{\boldsymbol{\rho}}^{(1)}(t) \right\rangle\!\!\right\rangle$$

$$\mathsf{minimize} \qquad J_{\mathcal{T}} = 1 - \left\langle\!\left\langle oldsymbol{\hat{
ho}}(\mathcal{T}) \middle| oldsymbol{\hat{\mathsf{P}}}_{\mathsf{tgt}}
ight
ight
angle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [u_i^{(1)}(t) - u_i^{(0)}(t)]^2 dt$$

$$\Delta u_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\left\langle \mathbf{\hat{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial u_i(t)} \middle| \mathbf{\hat{\rho}}^{(1)}(t) \right\rangle\!\!\right\rangle$$

$$\mathsf{minimize} \qquad J_{\mathcal{T}} = 1 - \left\langle\!\left\langle oldsymbol{\hat{
ho}}(\mathcal{T}) \middle| oldsymbol{\hat{\mathsf{P}}}_{\mathsf{tgt}}
ight
ight
angle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [u_i^{(1)}(t) - u_i^{(0)}(t)]^2 dt$$

$$\Delta u_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\left\langle \mathbf{\hat{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial u_i(t)} \middle| \mathbf{\hat{\rho}}^{(1)}(t) \right\rangle\!\!\right\rangle$$

$$\mathsf{minimize} \qquad J_{\mathcal{T}} = 1 - \left\langle\!\left\langle oldsymbol{\hat{
ho}}(\mathcal{T}) \middle| oldsymbol{\hat{\mathsf{P}}}_{\mathsf{tgt}}
ight
ight
angle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [u_i^{(1)}(t) - u_i^{(0)}(t)]^2 dt$$
$$\Delta u_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial u_i(t)} \middle| \hat{\boldsymbol{\rho}}^{(1)}(t) \right\rangle\!\!\!\right\rangle$$

$$\mathsf{minimize} \qquad J_{\mathcal{T}} = 1 - \left\langle\!\left\langle oldsymbol{\hat{
ho}}(\mathcal{T}) \middle| oldsymbol{\hat{\mathsf{P}}}_{\mathsf{tgt}}
ight
ight
angle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [u_i^{(1)}(t) - u_i^{(0)}(t)]^2 dt$$
$$\Delta u_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial u_i(t)} \middle| \hat{\boldsymbol{\rho}}^{(1)}(t) \right\rangle\!\!\right\rangle$$

$$\mathsf{minimize} \qquad J_{\mathcal{T}} = 1 - \left\langle\!\left\langle oldsymbol{\hat{
ho}}(\mathcal{T}) \middle| oldsymbol{\hat{\mathsf{P}}}_{\mathsf{tgt}}
ight
ight
angle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [u_i^{(1)}(t) - u_i^{(0)}(t)]^2 dt$$

$$\Delta u_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\left\langle \mathbf{\hat{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial u_i(t)} \middle| \mathbf{\hat{\rho}}^{(1)}(t) \right\rangle\!\!\right\rangle$$

minimize
$$J_{\mathcal{T}} = 1 - \left\langle\!\left\langle \hat{\boldsymbol{\rho}}(\mathcal{T}) \middle| \hat{\boldsymbol{\mathsf{P}}}_{\mathsf{tgt}} \right\rangle\!\right\rangle$$

GRAPE/LBFGS

Khaneja et al, JMR 172, 296 (2005)

on time grid:
$$u_{ij} = u_i(t_j);$$
 $\mathcal{E}_j = \mathcal{E}(t_j, t_{j-1})$
 $\Delta u_{ij} \propto \frac{\partial J_T}{\partial u_{ij}} = - \left\langle\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t_j) \middle| \frac{\partial \mathcal{E}_j}{\partial u_{ij}} \middle| \hat{\boldsymbol{\rho}}^{(0)}(t_{j-1}) \right\rangle\!\!\right\rangle,$

Krotov's method

Reich et al, JCP 136, 104103 (2012)

aux. functional
$$J = J_T + \sum_i \frac{\lambda_i}{S_i(t)} \int_0^T [u_i^{(1)}(t) - u_i^{(0)}(t)]^2 dt$$
$$\Delta u_i(t) = \frac{S_i(t)}{\lambda_i} \left\langle\!\!\!\left\langle \hat{\mathbf{P}}^{(0)}(t) \middle| \frac{\partial \mathcal{L}}{\partial u_i(t)} \middle| \hat{\boldsymbol{\rho}}^{(1)}(t) \right\rangle\!\!\!\right\rangle$$

optimize using quantum trajectories?

$$J_{\mathcal{T}} = 1 - \langle\!\langle \hat{\boldsymbol{
ho}}(\mathcal{T}) \big| \hat{\mathbf{P}}_{\mathsf{tgt}}
angle \qquad \longleftarrow \hat{\boldsymbol{
ho}} = \lim_{M o \infty} rac{1}{M} \sum_{k=1}^{M} |\Psi_k
angle \langle \Psi_k |$$

$$J_{\mathcal{T}} = 1 - \lim_{M \to \infty} \frac{1}{M} \sum_{k=1}^{M} \left| \underbrace{\langle \Psi_k(\mathcal{T}) \, | \, \Psi_{\text{tgt}} \rangle}_{\equiv \tau_k} \right|^2$$

$$J_{T} = 1 - \lim_{M \to \infty} \frac{1}{M} \sum_{k=1}^{M} \left| \underbrace{\langle \Psi_{k}(T) | \Psi_{\text{tgt}} \rangle}_{\equiv \tau_{k}} \right|^{2}$$

GRAPE/LBFGS

$$\frac{\partial J_{T}}{u_{ij}} = -\lim_{M \to \infty} \frac{1}{M} \sum_{k=1}^{M} \left[\frac{\partial \tau_{k}}{\partial u_{ij}} \tau_{k}^{*} + \tau_{k} \left(\frac{\partial \tau_{k}}{\partial u_{ij}} \right)^{*} \right]$$
$$\frac{\partial \tau_{k}}{u_{ij}} = \left\langle \Psi_{\text{tgt}}^{(0)}(t_{j}) \left| \frac{\partial \hat{\mathbf{U}}_{jk}}{\partial u_{ij}} \right| \Psi_{k}^{(0)}(t_{j-1}) \right\rangle$$

$$J_{T} = 1 - \lim_{M \to \infty} \frac{1}{M} \sum_{k=1}^{M} \left| \underbrace{\langle \Psi_{k}(T) | \Psi_{\text{tgt}} \rangle}_{\equiv \tau_{k}} \right|^{2}$$

GRAPE/LBFGS

$$rac{\partial au_k}{u_{ij}} = \left\langle \Psi^{(0)}_{ ext{tgt}}(t_j) \left| \left. rac{\partial \hat{\mathbf{U}}_{jk}}{\partial u_{ij}} \right| \Psi^{(0)}_k(t_{j-1})
ight
angle
ight
angle$$

$$J_{T} = 1 - \lim_{M \to \infty} \frac{1}{M} \sum_{k=1}^{M} \left| \underbrace{\langle \Psi_{k}(T) | \Psi_{\text{tgt}} \rangle}_{\equiv \tau_{k}} \right|^{2}$$

GRAPE/LBFGS

$$rac{\partial au_k}{u_{ij}} = \left\langle \Psi_{ ext{tgt}}^{(0)}(t_j) \left| \left. rac{\partial \mathbf{\hat{U}}_{jk}}{\partial u_{ij}} \right| \Psi_k^{(0)}(t_{j-1})
ight
angle
ight
angle$$

Krotov's method

Palao, Kosloff, PRA 68, 062308 (2003).

$$\Delta u_i(t) = rac{S_i(t)}{M\lambda_i} \sum_{k=1}^M \underbrace{\mathfrak{Im}\left\langle \chi_k^{(0)}(t) \left| \hat{\mathbf{H}}_i \left| \Psi_k^{(1)}(t)
ight
angle }_{\equiv \Delta u_{ik}(t)},$$

with
$$\chi_k^{(0)}(T) = -rac{\partial J_T}{\partial \langle \Psi_k |} = au_k^{(0)} \ket{\Psi_{ ext{tgt}}}$$

$$J_{T} = 1 - \lim_{M \to \infty} \frac{1}{M} \sum_{k=1}^{M} \left| \underbrace{\langle \Psi_{k}(T) | \Psi_{\text{tgt}} \rangle}_{\equiv \tau_{k}} \right|^{2}$$

GRAPE/LBFGS

$$\frac{\partial \tau_k}{u_{ij}} = \left\langle \Psi_{\text{tgt}}^{(0)}(t_j) \left| \frac{\partial \hat{\mathbf{U}}_{jk}}{\partial u_{ij}} \right| \Psi_k^{(0)}(t_{j-1}) \right\rangle$$

Krotov's method

Palao, Kosloff, PRA 68, 062308 (2003).

$$\Delta u_i(t) = rac{S_i(t)}{M\lambda_i} \sum_{k=1}^M \underbrace{\mathfrak{Im}\left\langle \chi_k^{(0)}(t) \left| \hat{\mathbf{H}}_i \right| \Psi_k^{(1)}(t)
ight
angle}_{\equiv \Delta u_{ik}(t)},$$

with
$$\chi_k^{(0)}(T) = -rac{\partial J_T}{\partial \langle \Psi_k |} = au_k^{(0)} \ket{\Psi_{ ext{tgt}}}$$

quantum speed limit for Dicke state generation

quantum speed limit for Dicke state generation

 \Rightarrow single trajectory allows to determine speed limit

caveats

Krotov's method

Palao, Kosloff, PRA 68, 062308 (2003).

$$\Delta u_i(t) = \frac{S_i(t)}{M\lambda_i} \sum_{k=1}^M \underbrace{\Im \mathfrak{m} \left\langle \chi_k^{(0)}(t) \middle| \hat{\mathbf{H}}_i \middle| \Psi_k^{(1)}(t) \right\rangle}_{\equiv \Delta u_{ik}(t)},$$

caveats

Krotov's method

Palao, Kosloff, PRA 68, 062308 (2003).

$$\Delta u_i(t) = \frac{S_i(t)}{M\lambda_i} \sum_{k=1}^M \underbrace{\mathfrak{Im}\left\langle \chi_k^{(0)}(t) \middle| \hat{\mathbf{H}}_i \middle| \Psi_k^{(1)}(t) \right\rangle}_{\equiv \Delta u_{ik}(t)},$$

. .

caveats

Krotov's method

Palao, Kosloff, PRA 68, 062308 (2003).

$$\Delta u_i(t) = \frac{S_i(t)}{M\lambda_i} \sum_{k=1}^M \underbrace{\mathfrak{Im}\left\langle \chi_k^{(0)}(t) \middle| \hat{\mathbf{H}}_i \middle| \Psi_k^{(1)}(t) \right\rangle}_{\equiv \Delta u_{ik}(t)},$$

. .

cross-trajectory optimization

Krotov's method (in Liouville space)

$$egin{aligned} \Delta u_i(t) &= rac{\mathcal{S}_i(t)}{\lambda_i} igg\langle\!\!\!\left\langle \mathbf{\hat{P}}^{(0)}(t) \Big| rac{\partial \mathcal{L}}{\partial u_i(t)} \Big| \mathbf{\hat{
ho}}^{(1)}(t) igg
ight
angle \ \hat{
ho} &= \lim_{M o \infty} rac{1}{M} \sum_{k=1}^M |\Psi_k
angle \langle \Psi_k | \quad iggrlined \end{array}$$

cross-trajectory optimization

Krotov's method (in Liouville space)

$$\Delta u_{i}(t) = \frac{S_{i}(t)}{M^{2}\lambda_{i}} \sum_{k,k'=1}^{M} \Im \left[\left\langle \xi_{k}^{(0)}(t) \middle| \hat{\mathbf{H}}_{i} \middle| \Psi_{k'}^{(1)}(t) \right\rangle \right]$$
$$\times \left\langle \Psi_{k'}^{(1)}(t) \middle| \xi_{k}^{(0)}(t) \right\rangle \right]$$
with $\hat{\mathbf{P}}^{(0)}(t) = \lim_{M \to \infty} \frac{1}{M} \sum_{k=1}^{M} |\xi_{k}\rangle \langle \xi_{k}|$

cross-trajectory optimization

Krotov's method (in Liouville space)

$$\begin{split} \Delta u_i(t) &= \frac{S_i(t)}{M^2 \lambda_i} \sum_{k,k'=1}^M \Im \mathfrak{Im} \Big[\left\langle \xi_k^{(0)}(t) \left| \, \hat{\mathbf{H}}_i \, \right| \Psi_{k'}^{(1)}(t) \right\rangle \right. \\ & \times \left\langle \Psi_{k'}^{(1)}(t) \, \left| \, \xi_k^{(0)}(t) \right\rangle \Big] \\ & \text{with } \, \hat{\mathbf{P}}^{(0)}(t) &= \lim_{M \to \infty} \frac{1}{M} \sum_{k'}^M |\xi_k\rangle \langle \xi_k| \end{split}$$

k=1

cross-trajectory terms!

parallelization approaches

Krotov's method

$$\Delta u_i(t) = \frac{S_i(t)}{M^2 \lambda_i} \sum_{k,k'=1}^M \Im \mathfrak{Im} \Big[\left\langle \xi_k^{(0)}(t) \middle| \widehat{\mathbf{H}}_i \middle| \Psi_{k'}^{(1)}(t) \right\rangle \\ \times \left\langle \Psi_{k'}^{(1)}(t) \middle| \xi_k^{(0)}(t) \right\rangle \Big]$$

Krotov's method

$$egin{aligned} \Delta u_i(t) &= rac{\mathcal{S}_i(t)}{M^2 \lambda_i} \sum_{k,k'=1}^M \Im \mathfrak{Im} \Big[\left< \xi_k^{(0)}(t) \left| \, \hat{\mathbf{H}}_i \, \right| \, \Psi_{k'}^{(1)}(t) \right> \ & imes \left< \Psi_{k'}^{(1)}(t) \, \left| \, \xi_k^{(0)}(t) \right> \Big] \end{aligned}$$

• sending update $\Delta u_i(t)$ is cheap

Krotov's method

$$\Delta u_i(t) = rac{S_i(t)}{M^2 \lambda_i} \sum_{k,k'=1}^M \Im \mathfrak{Im} \Big[\left\langle \xi_k^{(0)}(t) \left| \hat{\mathbf{H}}_i \right| \Psi_{k'}^{(1)}(t) \right
angle \\ imes \left\langle \Psi_{k'}^{(1)}(t) \left| \xi_k^{(0)}(t)
ight
angle \Big]$$

- sending update $\Delta u_i(t)$ is cheap
- sending states $|\xi_k\rangle$, $|\Psi_{k'}\rangle$ is expensive

Krotov's method

$$\Delta u_i(t) = rac{S_i(t)}{M^2 \lambda_i} \sum_{k,k'=1}^M \Im \mathfrak{Im} \Big[\left\langle \xi_k^{(0)}(t) \left| \hat{\mathbf{H}}_i \right| \Psi_{k'}^{(1)}(t) \right\rangle
ight.
onumber \ imes \left\langle \Psi_{k'}^{(1)}(t) \left| \xi_k^{(0)}(t)
ight
angle \Big]$$

- sending update $\Delta u_i(t)$ is cheap
- sending states $|\xi_k\rangle$, $|\Psi_{k'}\rangle$ is expensive
- \Rightarrow proposal:

only cross-reference trajectories k, k' that are local

conclusion

large Hilbert space & dissipative dynamics

 \rightarrow optimal control of MCWF trajectories with Krotov's method

conclusion

large Hilbert space & dissipative dynamics \rightarrow optimal control of MCWF trajectories with Krotov's method

Kurt Jacobs Army Research Lab

conclusion

large Hilbert space & dissipative dynamics \rightarrow optimal control of MCWF trajectories with Krotov's method

Kurt Jacobs Army Research Lab

Hideo Mabuchi Stanford

https://github.com/mabuchilab/QNET

conclusion

large Hilbert space & dissipative dynamics \rightarrow optimal control of MCWF trajectories with Krotov's method

Kurt Jacobs Army Research Lab

Hideo Mabuchi Stanford

https://github.com/mabuchilab/QNET

Christiane Koch Kassel (Germany)

NYQQ

quantum dynamics and control https://www.qdyn-library.net