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|Ψ〉 = Ĥ(t) |Ψ〉

|00〉 Ô |00〉
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Abstract
With recent improvements in coherence times, superconducting transmon qubits have be-
come a promising platform for quantum computing. They can be flexibly engineered over a
wide range of parameters, but also require us to identify an efficient operating regime. Using
state-of-the-art quantum optimal control techniques, we exhaustively explore the landscape
for creation and removal of entanglement over a wide range of design parameters. We
identify an optimal operating region outside of the usually considered strongly dispersive
regime, where multiple sources of entanglement interfere simultaneously, which we name the
quasi-dispersive straddling qutrits (QuaDiSQ) regime. At a chosen point in this region, a
universal gate set is realized by applying microwave fields for gate durations of 50 ns, with
errors approaching the limit of intrinsic transmon coherence. Our systematic quantum opti-
mal control approach is easily adapted to explore the parameter landscape of other quantum
technology platforms.
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1 Two Transmon Qubits Coupled via Cavity

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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superconducting qubits [1] inside a
transmission line resonator, Fig. from [2]

Parameters:

• ω1 = 6.0 GHz
• ω2 = 5.0 – 7.5 GHz (vary)
• ωc = 4.5 – 11.0 GHz (vary)
• α1 = −290 MHz
• α2 = −310 MHz
• g = 70 MHz
• τc = 3.2 µs [3];
• τq = 13.3 µs [4]

Hamiltonian in the rotating wave approximation (δq = ωq − ωd):

Ĥ = ~δcâ†â +
∑
q=1,2

[
~δqb̂

†
qb̂q +

αq
2
b̂
†
qb̂
†
qb̂qb̂q + g(b̂

†
qâ + b̂qâ

†)
]

+
~
2

(
ε∗(t)â + ε(t)â†

)
avoid treating only dispersive regime by numerical simulation of full Hamiltonian!

relevant parameters to describe landscape: ∆2/α = (ω2 − ω1)/α, ∆c/g = (ωc − ω1)/g

field-free properties of the Hamiltonian:
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field-free entanglement ζ = E00 + E01 + E10 − E11 from interfering dressed energy shifts.
ζ varies by order of magnitudes, while dressed decay only varies up to factor 2.3!

2 Entanglement creation and destruction
For each point (ω2, ωc): find pulse to maximize entanglement (two-qubit gate) and pulse to
implement local gate ∈ SU(2)⊗ SU(2)), using multi-stage optimization scheme [5].

1. Random Search

2. Gradient-free optimization of analytical pulse parameters

Use Nelder-Mead downhill simplex to minimize/maximize entanglement

3. Gradient-based optimization (Krotov’s method) for fine-tuning

Use Krotov’s method [6] to continue optimization of pulse for arbitrary perfect entangler [7]
and arbitrary local gate ∈ SU(2)⊗ SU(2), based on Cartan decomposition [8]

Û = k̂1 exp

[
i

2

(
c1σ̂xσ̂x + c2σ̂yσ̂y + c3σ̂zσ̂z

)]
k̂2; k̂1,2 ∈ SU(2)⊗ SU(2)
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optimization result for maximizing/minimizing entanglement:
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optimal point for universal gate implementation in quasi-dispersive “straddling qutrit” regime
(“QuaDiSQ”)

quantum speed limit (QSL):

• decay of qubit imposes limit on the
lowest reachable gate error

•QSL at 10 ns when perfect entangler
can no longer be realized at minimum error

• at point X: QSL for universal set at 50 ns
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3 A universal set of gates
optimize for all gates of the universal set at point X in QuaDiSQ regime
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For longer gate duration (T = 100 ns) spectral width can be constrained to ±200 MHz, and
pulses can be made robust w.r.t. 1% fluctuation in pulse amplitude (see preprint).
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