Efficient Optimization of Quantum Gates - e
iIn the Presence of Decoherence
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Abstract

Optimal control theory (OCT) represents a powerful tool for the implementation of quantum informa-
tion tasks. For open systems, OCT is expected to find control solutions that are robust to decoherence.
However, optimization of complex systems poses numerical challenges. Already in closed systems, the
dimension of the Hilbert space scales exponentially with the size of the system, i.e., d = 2" for n qubits.
The dimension of Liouville space is d2, and according to common wisdom, optimization of a unitary
operation requires propagation of a complete basis. Here, we show that for the optimization of unitary
operations, it is not necessary to consider a complete set of basis states. Instead, a reduced set of states
is sufficient. The minimal set consists of 3 states only.

To illustrate the eflicient optimization of a unitary for an open quantum system, we consider the
example of a Rydberg CPHASE gate with neutral trapped atoms [1]. The system Hamiltonian allows
for diagonal gates only. We model the system dynamics with a master equation in Lindblad form and
use optimal control theory, specifically Krotov’s method |2], to find control pulses that implement the
desired operation, and discuss the minimum number of states that needs to be accounted for in the
optimization. For two transmon qubits coupled via shared cavity modes [3], also non-diagonal gates
are possible. We give an outlook on the optimization of a CNOT gate on this system

(D Rydberg gate: two trapped neutral atoms
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(2 Gate optimization in open quantum systems
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Decoherence is taken into account explicitly in the optimization through the equations of motion!

(3 Reduced set of density matrices

[ Claim: We only need to propagate 3 matrices, not 16

No need to characterize the full dynamical map!
(1) Do we stay in the logical subspace?

(2) Are we unitary, and if yes, did we implement the right gate?
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®(p1)ij = Q(dCé;j—_‘l_; >5@'j3 check that gate is diagonal in same basis as O

Just looking at D(p;) = U ,01UJr cannot distinguish any two diagonal gates of the form
U = dl&g( 1§b00 61¢01 61¢10 €1¢11)

®(p2)ij = %: “totally rotated state”, check relative phases between maps of logical eigenstates

Concept of total rotation: p = > NP p =PrpwithVi: PppP; #£0
®(p3)ij = 1523' check CPTP map on logical subspace

01, P2, p3 together ensure that map is unitary on logical subspace.
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(@) Rydberg CPHASE optimization results
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(® Outlook: transmon two-qubit gate

Parameters:

o w. = 8.3 GHz

o w; = 6.5 GHz

o wy = 6.6 GHz

e v = a9 = 150 MHz
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Schrieffer-Wolft transformation allows approximate diagonalization of Hamiltonian
= reduced Hamiltonian after integrating out cavity
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(5) Conclusions & Next Steps

e A set of three density matrices is sufficient for gate optimization (independent of dimension of Hilbert
space!): Since the goal is only to check whether a given unitary gate has been implemented, one
does not need to span a full basis of the Hilbert space.

e Further reduction possible in special cases: If the Hamiltonian can only generate diagonal gates, pq
is automatically mapped correctly:.

e States can be weighted according to physical interpretation. One may even change the relative
weights between p1, po, p3 dynamically.

e Success of optimization with reduced set of density matrices was demonstrated for the example of
a CPHASE Rydberg gate. Optimal solutions match known STIRAP-like behavior in which the
population in the decaying intermediary state is suppressed.

e [t can be proven that p;, p9, p3 are sufficient to distinguish two unitaries in the logical subspace [5],
but good convergence must still be shown numerically for Hamiltonian allowing non-diagonal gates.

e Superconducting qubits (transmons) provide rich dynamics and allow the realization of non-diagonal
gates. They provide a suitable further testbed for the optimization with a reduced set of states.




