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Introduction

In recent years, a number of physical implementations of Quantum Computing have been exam-
ined, such as cavity QED, trapped ions, NMR, or SQUID-systems. We consider an alternative
model based on neutral ultracold atoms in an optical lattice [1]. The qubits can be encoded in
the electronic or hyperfine levels of the atoms. An appropriately shaped laser pulse couples to the
electronic states and drives arbitrary quantum-computational operations. Single qubit operations
are easy to achieve. We have implemented a numerical scheme to find laser pulses that perform a
two-qubit phasegate. Our goal consists in calculating short, high fidelity pulses for the realization
of this target gate.

Universal Quantum Computing

The set of all one-qubit gates plus the two-qubit CNOT is universal. More generally, the CNOT
is equivalent to the controlled phasegate, combined with two Hadamard gates.
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inter-nuclear distance r / a.u.

o single qubits: 1S state is [0), 3P; state is 1)
e two atoms in harmonic trap potential; relative coordinates, integrate out COM

e For r < oo: Born-Oppenheimer molecular potentials
e two qubit basis (electronic surfaces): |00}, [01), [10), [11). X 12;; surface is [00)

o laser pulse drives transition between |00) and B'S |aux) surface

e goal: change phase of only the |00) eigenstate.

Qubit Gate
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Finding an Optimal Pulse

Starting from a guess pulse, an optimal pulse implementing the target operation O can be found
by minimization of the target functional J |2, 3|
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e |/) are the N initial states of the system
e [) are target states, U (T";0;€) |I) are states propagated from t = 0 to t = T with the pulse

€(t).

e phase sensitive fidelity Fj is calculated from the overlap between the target states and the
propagated states

e second part of J is constraint of the time evolution: field changes should converge within the
pulse time; pulse shape S(t) enforces smooth switching on/off. « is a multiplier strengthening
the constraint.

The Optimal Control Theory (OCT) algorithm finds a modification Ae(t) to the guess pulse €()
that is guaranteed to decrease J.

One-Qubit and Two-Qubit Phases

e driving the interacting system always affects the non-interacting system as well; but we want
a true two-qubit operation.
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e optimize both the interacting and the non-interacting system in parallel with a single pulse
(two state-to-state transitions)

| |
o target for CNOT is xgg = m; ¢g = 0. This implies that the true two-qubit-phase fulfills the
target condition.

e condition is too strict: only xog — ¢g = 7 1is required
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System Parameters and Search Strategies

e trap distance d: only large values are experimentally feasible. Current calculations are at
d = 10 nm, ultimate goal is d = 75nm |4]

e pulse time: larger values for d require more time for the pulse. For d = 10nm, 17" = 10 ps
e pulse intensity: more population transfer

e multi-photon transitions: use interference to make pulse “dark” for non-interacting system
e increase «: allow more changes to intensity

e use informed guess pulses, e.g. based on Franck-Condon factors.

Optimized Pulses

pulse from preoptimized guess pulse spectrum
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sequence of 100 fs Rabi guess pulses (excerpt: total pulse time 10 ps) spectrum
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Outlook

e find pulses for better fidelities and experimentally more feasible parameters
e accumulate target phase by repeating a pulse sequence
e formulate OCT functionals directly in terms of ¢qg: loosen constraint on on-qubit-phase

e apply the method to Rb system: better known system, easy to work with for experimentalists;
but: more complicated, qubit encoding in hyperfine levels.
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