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Universal Quantum Computing

Controlled Phasegate

Ô(χ) = CPHASE(χ) =


e iχ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Controlled-Not

CNOT =

H

X

X O(π)

X

X H

CPHASE(π) equivalent to CNOT ⇒ Universal Quantum Computing

CPHASE is used in Quantum Fourier Transform
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Two-Qubit Gates on Trapped Neutral Atoms

Calcium:

1S0 |0〉

1P3 |1〉

1P1 |a〉

ωL = 23652 cm-1

d

x1 x2

Low-Lying states in Alkaline-Earth atoms or Rydberg states

Atoms in optical lattice or optical tweezers
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The Objective

Problem

QC with atomic collisions: adiabaticity ⇒ slow.

Strong interaction ⇒ fast gates?
– only if ignoring motion.

Quantum Speed limit

QSL: What is the maximum speed at which a quantum system can evolve?

What limits on the gate duration can we find through optimization?

How do gate durations depend on the interaction strength?

Approach

Describe the system including the motional degree of freedom.

Optimize for varying times / interaction strengths:
I Two Calcium atoms at fixed distance (fixed interaction):

vary T
II For fixed T , two atoms with “artificial” dipole-dipole interaction

V (R) = −C3/R3:
vary C3
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Theoretical Model and Optimization Method

Two-Qubit-Hamiltonian, Optimization with Krotov
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System Hamiltonian

d

x1 x2

⇒
integrate out COM

R0 = d

47304.61 cm-1

38862.37 cm-1

30420.13 cm-1

23652.30 cm-1

15210.06 cm-1

0.0 cm-1 |00〉

|0a〉
|a0〉

|aa〉

|a1〉

|01〉

|1a〉

|10〉

|11〉
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Optimizing the Laser Pulse

Target Functional

J = −
1

N
Re
[
tr
(
Ô
†
Û
)]

︸ ︷︷ ︸
F

+

T∫
0

α

S(t)
∆ε2(t) dt;

Ô = CPHASE

Û = e−iĤ(ε(t))t

Krotov: pulse update ∆ε
minimizing J

∆ε ∼ Im 〈Ψbw |µ̂|Ψfw 〉

Palao, Kosloff,
PRA 68, 062308 (2003)

|00〉 Ô |00〉

|01〉 Ô |01〉

|10〉 Ô |10〉

|11〉 Ô |11〉

ε(1) ε(0)

t0 T

∆ε

t
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Measures of Merit

Fidelity F and cost functional J are not very informative.

Control over the Motional Degree of Freedom

F00 =
∣∣∣〈00(R)

∣∣∣Û(T , 0; εopt)
∣∣∣ 00(R)

〉∣∣∣2
Does |00〉 return to it’s initial vibrational eigenstate?

Gate Phases

φ00 = arg
(〈

00(R)
∣∣∣Û(T , 0; εopt)

∣∣∣ 00(R)
〉)

What is the phase change relative to the initial state?

True Two-Qubit Phase

Cartan Decomposition leads to χ = φ00 − φ01 − φ10 + φ11

Concurrence (Entanglement) C =
∣∣sin χ

2

∣∣
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Two Calcium Atoms at Short Internuclear Distance

For which gate durations can we reach a high-fidelity CPHASE?
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Parameters of the Optimization

Short internuclear distance
⇒ sufficient interaction d = 5 nm

Peak intensity ε0

to induce 1 Rabi cycle 0
T

ε0

Pulse duration between T 1 rad
int = 1.23 ps and Tv = 800 ps

|00〉

|0a〉
1

T 1 rad
int

d

|00〉
0

π
Tv

R

E
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Optimization Success over Pulse Duration

0
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0.8

1

1 10 100 1000

Optimization time T [ps]

two-qubit phase

vibrational purity

fidelity

⇒ For small T , vibrational purity is lost with increasing two-qubit phase

⇒ High two-qubit phase and high vibrational only for long pulse durations
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System Dynamics for 800 ps Pulse

7

FIG. 6: (color online) Pulse dynamics (top) and spectrum
(bottom) for the optimized pulse with T = 50 ps after 51
iterations(F = 0.844), analogously to Fig. 4

all times. The overall fidelity amounts to only 0.579, cf.
Table I, with the target phase for both the |00� state and
|01� state missed by equal amounts, cf. black squares and
empty circles in the upper panel of Fig. 5. This reflects
that the optimization is balanced with respect to all tar-
gets, i.e. the terms in the sum of the target functional,
Eqs. (6)-(7), all enter with the same weight. A com-
parison of the |00� and |0� phase dynamics (upper and
lower left panels of Fig. 5) illustrates how a true non-
local phase is achieved, even though the optimization is
only partially successful: Without interaction the phase
on the |00� state would evolve according to φ00 = 2φ0.
The extent to which this is not the case demonstrates
how the interaction leads to the non-local phase.

The optimized pulses, their spectra, and the corre-
sponding population dynamics for intermediate and long
gate durations are shown in Figs. 6 (T = 50 ps) and 7
(T = 800 ps). The overall structure of the optimized
pulse for T = 50ps is similar to that obtained for
T = 5 ps: Two peaks at the beginning and the end
induce population transfer to and from the auxiliary
state while the intermediate part of the pulse drives
Rabi oscillations in the course of which the non-local
phase is achieved. As the gate operation time T is
further increased, specific features of the pulse become
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FIG. 7: (color online) Pulse dynamics (top) and spectrum
(bottom) for the optimized pulse with T = 800 ps after 40
iterations (F = 0.997), analogously to Fig. 4

less discernible. The optimized pulse for T = 800 ps
displays by and large the Gaussian envelope of the
guess pulse XXXX No , and the modifications due to
optimization are not resolved on the global time scale.
The population dynamics for a single qubit and the
two-qubit system for T = 50 ps (black solid and red
dot-dashed lines in the upper panel of Fig. 6) show more
differences than those for T = 5 ps in Fig. 4, but are
overall still fairly similar. This changes for T = 800 ps
(black solid and red dot-dashed lines in the upper panel
of Fig. 7), where the populations dynamics for |00�
and |01� are clearly distinct. This corresponds to fully
achieving the desired non-local phase (χ = XXXXπ for
T = 800 ps as compared to χ = XXXXπ for T = 50ps).

wieso haben die Pulse alle ungefähr dieselbe Peak-Amplitude?

Bei längeren Pulsen sollte die doch viel kleiner sein

können Say something about integrated pulse energy

The spectrum of the optimal pulse for T = 50 ps is
fairly similar to that obtained for T = 5ps, cf. the lower
panels of Figs. 4 and 6: It consists of a single narrow
peak centered around the |0� → |a� transition frequency.
The spectrum shows somewhat more features within the
peak. This is attributed to the better spectral resolution
for increasing gate operation time T . The spectrum

F = 0.997 8
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FIG. 8: Phase dynamics induced in the two-qubit and single-
qubit systems by the optimized pulse with T = 800 ps after
40 iterations (F = 0.997), analogously to Fig. 5.

of the optimal pulse obtained for T = 800 ps differs
from those for shorter gate operation times in that
small spectral components at fractions of the |0� → |a�
transition frequency appear, cf. bottom panel of Fig. 7.

good explanation

The phase dynamics induced by the optimized pulse

of Fig. 7 are shown in Fig. 8. Targets in Fig? Since the

target phases include the natural time evolution, their
location in Fig. 8 differs from that in Fig. 5. Why single-
qubit target missed more than two-qubit target?

We also carried out optimizations for non-local target
phases that are a fraction of π such as π

2 or π
3 . If high-

fidelity implementations of such fractional phasegates are
found, several of these gates can be combined sequen-
tially to yield a total non-local phase of π. However, for
short gate operation times, optimization for non-local
target phases smaller than π did not prove any more
successful than optimization for π. Moreover, we inves-
tigated whether pulses driving multi-photon transitions,
for example pulses with their central frequency a third of
|0� → |1� transition frequency, yield better fidelities for
short gate operation times. However, we did not observe
any substantial difference in the results compared to the
pulses reported in Figs. 4, 6, and 7. These additional
investigations confirm that for our example of two ultra-
cold calcium atoms in an optical lattice, the limits on the
gate operation time is set by the requirement to restore
the ground vibrational state of the trap.

B. Optimization for Two Atoms at Long Distance
under Strong Dipole-Dipole Interaction

To determine whether it is really the ground state mo-
tion in the trap and not the non-local interaction in the
excited state that sets the speed limit for two atoms res-
onantly excited to an interacting state, we vary the in-
teraction strength C3 of the dipole-dipole interaction po-
tential,

V̂(R)0a = V̂(R)a0 = −C3

R3
, (16)

keeping the trap frequency constant. We consider the
atoms to be separated by d = 200 nm which corresponds
to a realistic optical lattice in the UV regime. In order
to keep the overlap of the ground state wave functions
smaller than 10−4, at a distance of 200 nm the trap fre-
quency has to be set to at least 250 kHz. This corre-
sponds to Tv ≈ 2 ns.

For the interaction potential of two calcium atoms in
the B1Σ+

u state used in Sec. III A, the C3 coefficient takes
a value of 16.04 a.u.= 0.5217× 103 nm3cm−1 [23, 24, 31].
This results in an interaction energy of about 4 cm-1 at
d = 5 nm. Based on the results of Sec. IIIA, we know
that such an interaction energy is sufficient to yield a non-
local phase in a few tens of picoseconds. For d = 200 nm,
the same interaction energy is obtained by choosing C3

to be roughly 1 × 106 a.u. Just for comparison, the C3

coefficient for highly excited Rydberg states is about 3×
106, resulting in an interaction energy of about 1.3 ×
10−3 cm-1 at a typical distance of 4µm [32].

We vary the C3 coefficient from 1 × 106 a.u. to
1 × 109 a.u. If the gate duration is solely determined
by the requirement of a sufficiently strong interaction
to realize the non-local phase, we expect to find high-
fidelity implementations with optimal control by increas-
ing the C3 coefficient. In particular, we pose the question
whether picosecond and sub-picosecond gate durations
can be achieved given that the interaction is sufficiently
strong, i.e. given that the C3 coefficient is sufficiently
large. Based on the results of Sec. IIIA where a non-
local phase of π was achieved within 50 ps, we estimate
that C3 needs to be increased from 1× 106 by a factor of
50 (100) to obtain a high-fidelity gate with a duration of
1 ps (0.5 ps).

We optimized for a controlled phasegate with pulse du-
rations of T = 0.5 ps and T = 1ps using C3 = 1×106 a.u.,
4 × 108 a.u., 8 × 108 a.u., and 1.6 × 109 a.u., cf. Table II.
The central frequency of the guess pulse was adjusted
in each case to compensate for the increased interaction
energy and ensure resonant excitation. The grid param-
eters were chosen to be Rmin = 5 a0, Rmax = 13000 a0 ≈
688 nm, and NR = 1024. This choice of Rmax guarantees
that at least fifty eigenstates of the trap are accurately
represented. We verified that the grid is sufficiently large
such that the wave packet does not reach the boundaries
of the grid during propagation. Moreover we checked
that doubling the number of grid points did not yield

τ00 =
〈

00(R)
∣∣∣Û(T , 0; εopt)

∣∣∣ 00(R)
〉
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Two Atoms at Long Distance under Strong
Dipole-Dipole Interaction

Can we avoid vibration with very short pulses, but very strong interaction?
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Parameters of the Optimization

Fixed short pulse duration
T = 1 ps, T = 0.5 ps

Realistic lattice spacing
with strong interaction ∼ − C3

R3

Vary C3:

C3 = 1× 106

Action over 1 ps for Calcium at
d = 5 nm, scaled to d = 200 nm

Increase by three orders of magnitude
Action over 800 ps for Calcium at
d = 5 nm, scaled to d = 200 nm

d = 200 nm

|00〉

|0a〉

d

C3 = 1× 106

...

C3 = 1× 109
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Optimization Success over Dipole Interaction Strength
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⇒ Increasing two-qubit-phase with increasing interaction strength

⇒ For small T , vibrational purity is lost with increasing two-qubit phase
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Long gate duration can reach arbitrarily high fidelities.

For short gate durations, the two-qubit phase is at the expense of the vibrational
purity.

If T < QSL, not all measures of merit can be fulfilled.

Time scale for a successful gate is determined by max (Tint ,Tvib).
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