Optimal Control for Quantum Networks

Michael Goerz

Stanford University / Army Research Lab

CECAM Workshop Numerical methods for optimal control of open quantum systems Berlin September 27, 2016

quantum technology and quantum networks

quantum technology and quantum networks

scalable systems \Rightarrow quantum networks

the software toolbox

Simulation & Optimization

QDYN	l	Foi	tran		
high performance quantum simulation and optimal control					
Spectral methods Chebychev/Newton propagator Krotov's method Grape/LBFGS					
Solves equation of motion and control problems					
https://github.com/goerz/qdynpylib http://bitly.com/agkoch-kassel					
Mchael	QSD		G+		
GNET O	Quantum	Quantum Trajectories solver			
https://github.com/mabuchilab/c					
	clusterje	ob	梬 pyt	hon"	
	Drive HPC compute jobs				
https://github.com/goerz/clusterjob					
	n QuTip				

numerical optimal control

optimization functional

$$J_{T} = 1 - \frac{1}{d^{2}} \left| \sum_{k=1}^{d} \left\langle \phi_{k}^{\text{tgt}} \middle| \phi_{k}(T) \right\rangle \right|^{2} \longrightarrow 0$$

numerical optimal control

optimization functional

$$J_{T} = 1 - \frac{1}{d^{2}} \left| \sum_{k=1}^{d} \left\langle \phi_{k}^{\text{tgt}} \middle| \phi_{k}(T) \right\rangle \right|^{2} \longrightarrow 0$$

iterative scheme: $\epsilon^{(0)}(t) \rightarrow \epsilon^{(1)}(t)$

numerical optimal control

optimization functional

$$J_{\mathcal{T}} = 1 - rac{1}{d^2} \left| \sum_{k=1}^d \left\langle \phi_k^{ ext{tgt}} \, \big| \, \phi_k(\mathcal{T}) \right
angle
ight|^2 \longrightarrow 0$$

iterative scheme: $\epsilon^{(0)}(t) \rightarrow \epsilon^{(1)}(t)$

Applications:

- state preparation
- quantum gates, entanglement creation
- robustness to qu. and classical noise
- performance bounds (QSL, parameter exploration)

mapping the design parameter landscape of cQED

[Blais et al, PRA 75, 032329 (2007)]

transmon qubits: optimal system parameters?

- qubit frequency, anharmonicity
- qubit-cavity coupling, detuning

mapping the design parameter landscape of cQED

[Blais et al, PRA 75, 032329 (2007)]

transmon qubits: optimal system parameters?

> qubit frequency, anharmonicity

 qubit-cavity coupling, detuning

quantum networks

[Cirac et al, PRL 78, 3221 (1997)]

[Cirac et al, PRL 78, 3221 (1997)]

each node j (after adiabatic elimination):

$$\mathbf{\hat{H}}_j = -\delta \mathbf{\hat{a}}_j^{\dagger} \mathbf{\hat{a}}_j - i g_j(t) (\mathbf{\hat{\sigma}}_+ \mathbf{\hat{a}}_j - \mathbf{\hat{\sigma}}_- \mathbf{\hat{a}}_j^{\dagger})$$

Lindblad operator $\sqrt{2\kappa} \hat{\mathbf{a}}_j$

inherently dissipative (at the same scale as interactions!)

Quantum trajectory: specific realization of an evolution in Hilbert space, and (bath) measurement record

Quantum trajectory: specific realization of an evolution in Hilbert space, and (bath) measurement record

- homodyne/heterodyne measurement
 - \Rightarrow Itô Calculus, QSDE
- photon counting \Rightarrow quantum jumps

Quantum trajectory: specific realization of an evolution in Hilbert space, and (bath) measurement record

- homodyne/heterodyne measurement
 - $\Rightarrow \mathsf{It\hat{o}} \; \mathsf{Calculus,} \; \mathsf{QSDE}$
- photon counting \Rightarrow quantum jumps

... or a numerical tool for the ensemble dynamics! (in lieu of master equation)

Quantum trajectory: specific realization of an evolution in Hilbert space, and (bath) measurement record

- homodyne/heterodyne measurement
 - \Rightarrow Itô Calculus, QSDE
- photon counting \Rightarrow quantum jumps

... or a numerical tool for the ensemble dynamics! (in lieu of master equation)

ensemble dynamics

$$\hat{\boldsymbol{
ho}}(t) = rac{1}{N} \sum_{n=1}^{N o \infty} \ket{\Psi_n(t)} ig \Psi_n(t) \ \left\langle \hat{\mathbf{O}}(t) \right
angle = \operatorname{tr} \left[
ho^{\dagger} \hat{\mathbf{O}}(t)
ight] = rac{1}{N} \sum_{n=1}^{N o \infty} \left\langle \hat{\mathbf{O}}(t)
ight
angle_n$$

for each trajectory $|\Psi_n\rangle$:

1 effective Hamiltonian
$$H_{\text{eff}} = \hat{\mathbf{H}} - \frac{i\hbar}{2} \sum_{i} \hat{\mathbf{L}}_{i}^{\dagger} \hat{\mathbf{L}}_{i}$$

for each trajectory $|\Psi_n\rangle$:

- **1** effective Hamiltonian $H_{\text{eff}} = \hat{\mathbf{H}} \frac{i\hbar}{2} \sum_{i} \hat{\mathbf{L}}_{i}^{\dagger} \hat{\mathbf{L}}_{i}$
- 2 random number $r \in [0, 1)$, propagate until $\langle \Psi(t_j) | \Psi(t_j) \rangle = r$.

for each trajectory $|\Psi_n\rangle$:

- **1** effective Hamiltonian $H_{\text{eff}} = \hat{\mathbf{H}} \frac{i\hbar}{2} \sum_{i} \hat{\mathbf{L}}_{i}^{\dagger} \hat{\mathbf{L}}_{i}$
- 2 random number $r \in [0, 1)$, propagate until $\langle \Psi(t_j) | \Psi(t_j) \rangle = r$.
- 3 Apply an instantaneous quantum jump $|\Psi(t_j)\rangle \rightarrow \hat{\mathbf{L}}_n |\Psi(t_j)\rangle$ use $\hat{\mathbf{L}}_n$ with relative probability $\langle \Psi(t_j) | \hat{\mathbf{L}}_n^{\dagger} \hat{\mathbf{L}}_n | \Psi(t_j) \rangle$.

for each trajectory $|\Psi_n\rangle$:

- **1** effective Hamiltonian $H_{\text{eff}} = \hat{\mathbf{H}} \frac{i\hbar}{2} \sum_{i} \hat{\mathbf{L}}_{i}^{\dagger} \hat{\mathbf{L}}_{i}$
- 2 random number $r \in [0, 1)$, propagate until $\langle \Psi(t_j) | \Psi(t_j) \rangle = r$.
- 3 Apply an instantaneous quantum jump $|\Psi(t_j)\rangle \rightarrow \hat{\mathbf{L}}_n |\Psi(t_j)\rangle$ use $\hat{\mathbf{L}}_n$ with relative probability $\langle \Psi(t_j)|\hat{\mathbf{L}}_n^{\dagger}\hat{\mathbf{L}}_n|\Psi(t_j)\rangle$.
- After the jump, normalize $|\Psi(t_j)\rangle$, draw a new random number $r \in [0, 1)$ and continue the propagation.

for each trajectory $|\Psi_n\rangle$:

[Dum et al. PRA 4879 (1992); Mølmer et al. JOSAB 10, 524 (1993)]

- **1** effective Hamiltonian $H_{\text{eff}} = \hat{\mathbf{H}} \frac{i\hbar}{2} \sum_{i} \hat{\mathbf{L}}_{i}^{\dagger} \hat{\mathbf{L}}_{i}$
- 2 random number $r \in [0, 1)$, propagate until $\langle \Psi(t_j) | \Psi(t_j) \rangle = r$.
- 3 Apply an instantaneous quantum jump $|\Psi(t_j)\rangle \rightarrow \hat{\mathbf{L}}_n |\Psi(t_j)\rangle$ use $\hat{\mathbf{L}}_n$ with relative probability $\langle \Psi(t_j)|\hat{\mathbf{L}}_n^{\dagger}\hat{\mathbf{L}}_n|\Psi(t_j)\rangle$.
- After the jump, normalize $|\Psi(t_j)\rangle$, draw a new random number $r \in [0, 1)$ and continue the propagation.

Can we optimize over individual trajectories $|\Psi_n\rangle$?

optimal control of quantum trajectories

methods of optimal control – gradient-free

gradient-free: relies *only* on evaluation of functional use e.g. Nelder-Mead simplex

methods of optimal control – gradient-free

gradient-free: relies only on evaluation of functional

- use e.g. Nelder-Mead simplex
- CRAB: truncate the search space

methods of optimal control – gradient-free

gradient-free: relies only on evaluation of functional

- use e.g. Nelder-Mead simplex
- CRAB: truncate the search space

Works great when there are only a handful of control parameters.

Good for obtaining guess pulses!

methods of optimal control - gradient-based

typical functional:
$$J_{\mathcal{T}}(\{\tau_k\})$$
,
 $\tau_k = \left\langle k^{\text{tgt}} \middle| \mathbf{\hat{U}}(\mathcal{T}, \mathbf{0}) \middle| k \right\rangle$

Grape/LBFGS: use gradient $\frac{\partial J_T}{\partial \epsilon_i}$

[Khaneja et al, JMR 172, 296 (2005); de Fouquiéres et al, JMR 212, 412 (2011)]

$$\frac{\partial \tau_k}{\partial \epsilon_j} = \left\langle k^{\text{tgt}} \left| \, \hat{\mathbf{U}}_{nt-1} \dots \hat{\mathbf{U}}_{j+1} \, \frac{\partial \hat{\mathbf{U}}_j}{\partial \epsilon_j} \, \hat{\mathbf{U}}_{j-1} \dots \hat{\mathbf{U}}_1 \, \right| \, k \right\rangle = \left\langle \chi_k(t_{j+1}) \left| \, \frac{\partial \hat{\mathbf{U}}_j}{\partial \epsilon_j} \, \right| \, \phi_k(t_j) \right\rangle \,,$$

methods of optimal control - gradient-based

typical functional:
$$J_{T}(\{\tau_{k}\})$$
,
 $\tau_{k} = \left\langle k^{\text{tgt}} \middle| \mathbf{\hat{U}}(T,0) \middle| k \right\rangle$

• Grape/LBFGS: use gradient $\frac{\partial J_T}{\partial \epsilon_j}$

[Khaneja et al, JMR 172, 296 (2005); de Fouquiéres et al, JMR 212, 412 (2011)]

$$\frac{\partial \tau_k}{\partial \epsilon_j} = \left\langle k^{\text{tgt}} \left| \, \hat{\mathbf{U}}_{nt-1} \dots \hat{\mathbf{U}}_{j+1} \, \frac{\partial \hat{\mathbf{U}}_j}{\partial \epsilon_j} \, \hat{\mathbf{U}}_{j-1} \dots \hat{\mathbf{U}}_1 \, \right| \, k \right\rangle = \left\langle \chi_k(t_{j+1}) \left| \, \frac{\partial \hat{\mathbf{U}}_j}{\partial \epsilon_j} \, \right| \, \phi_k(t_j) \right\rangle \,,$$

 Krotov's method: constructive pulse update (time-continuous)

$$\Delta\epsilon(t) \propto \sum_{k=1}^{N} \left\langle \chi_{k}^{(i)}(t) \middle| \left(\left. \frac{\partial \hat{\mathbf{H}}}{\partial \epsilon} \middle|_{\phi_{k}^{(i+1)}(t)} \right) \middle| \phi_{k}^{(i+1)}(t) \right\rangle; \quad \left| \chi_{k}^{(i)}(T) \right\rangle = - \frac{\partial J_{T}}{\partial \left\langle \phi_{k} \right|} \middle|_{\phi_{k}^{(i)}(T)}$$

[Zhu et al, JCP 108, 1953 (1998); Palao, Kosloff, PRA 68 062308 (2003); Reich et al, JCP 136, 104103 (2012)]

Grape/LBFGS: $\frac{\partial \hat{\mathbf{U}}_j}{\partial \epsilon_j} \rightarrow \dots$?

Grape/LBFGS:
$$\frac{\partial \hat{\mathbf{U}}_{j}}{\partial \epsilon_{j}} \rightarrow \dots$$
?
Krotov: $\frac{\partial J_{T}}{\partial \langle \phi_{k} |} \Big|_{\phi_{k}^{(i)}(T)}$ OK

Grape/LBFGS:
$$\frac{\partial \hat{\mathbf{U}}_{j}}{\partial \epsilon_{j}} \rightarrow \dots$$
?
Krotov: $\frac{\partial J_{T}}{\partial \langle \phi_{k} |} \Big|_{\phi_{k}^{(i)}(T)}$ OK

Krotov optimization procedure

Each trajectory contributes to pulse update $\Delta \epsilon(t)
ightarrow$ average

Grape/LBFGS:
$$\frac{\partial \hat{\mathbf{U}}_{j}}{\partial \epsilon_{j}} \rightarrow \dots$$
?
Krotov: $\frac{\partial J_{T}}{\partial \langle \phi_{k} |} \Big|_{\phi_{k}^{(i)}(T)}$ OK

Krotov optimization procedure

Each trajectory contributes to pulse update $\Delta \epsilon(t) \rightarrow$ average

cf. "ensemble optimization" for robustness [Goerz et al., PRA 90, 032329 (2014)]

Grape/LBFGS:
$$\frac{\partial \hat{\mathbf{U}}_{j}}{\partial \epsilon_{j}} \rightarrow \dots$$
?
Krotov: $\frac{\partial J_{T}}{\partial \langle \phi_{k} |} \Big|_{\phi_{k}^{(i)}(T)}$ OK

Krotov optimization procedure

Each trajectory contributes to pulse update $\Delta \epsilon(t)
ightarrow$ average

cf. "ensemble optimization" for robustness [Goerz et al., PRA 90, 032329 (2014)]

$$J_{T,sm} = \frac{1}{N^2} \left| \sum_{k} \tau_k \right|^2 \to - \frac{\partial J_{T,sm}}{\partial \langle \phi_k |} \Big|_{\phi_k^{(i)}(T)} = \left(\frac{1}{N^2} \sum_{l=1}^N \tau_l \right) \left| k^{\text{tgt}} \right\rangle,$$
$$J_{T,re} = \frac{1}{N} \Re \epsilon \sum_{k} \tau_k \to - \frac{\partial J_{T,re}}{\partial \langle \phi_k |} \Big|_{\phi_k^{(i)}(T)} = \frac{1}{2N} \left| k^{\text{tgt}} \right\rangle$$

example: directional state transfer

 $\mathbf{\hat{H}} = \mathbf{\hat{H}}_1 + \mathbf{\hat{H}}_2 + i\kappa(\mathbf{\hat{a}}_1^{\dagger}\mathbf{\hat{a}}_2 - \mathbf{\hat{a}}_1\mathbf{\hat{a}}_2^{\dagger}), \quad \mathbf{\hat{L}} = \sqrt{2\kappa}(\mathbf{\hat{a}}_1 + \mathbf{\hat{a}}_2)$

example: directional state transfer

 $\hat{\mathbf{H}} = \hat{\mathbf{H}}_1 + \hat{\mathbf{H}}_2 + i\kappa(\hat{\mathbf{a}}_1^{\dagger}\hat{\mathbf{a}}_2 - \hat{\mathbf{a}}_1\hat{\mathbf{a}}_2^{\dagger}), \quad \hat{\mathbf{L}} = \sqrt{2\kappa}(\hat{\mathbf{a}}_1 + \hat{\mathbf{a}}_2)$

Time-symmetric solution to |10
angle
ightarrow |01
angle with dark state condition $\hat{\mathbf{L}} \ket{\Psi(t)} = 0$

density matrix optimization: $|10
angle\langle10|
ightarrow|01
angle\langle01|$ [Y. Ohtsuki]

MCWF optimization: $|10\rangle \rightarrow |01\rangle$

MCWF optimization: $|10\rangle \rightarrow |01\rangle$

outlook

 "Hybrid optimization" (combine gradient-free and gradient-based methods); pulse smoothing

[Goerz et al, EPJ Quantum Tech. 2, 21 (2015)]

Optimize with non-Hermitian Hamiltonian

$$\hat{\mathbf{H}}_{\mathsf{eff}} = \hat{\mathbf{H}} - \frac{i\hbar}{2}\sum_{i}\hat{\mathbf{L}}_{i}^{\dagger}\hat{\mathbf{L}}_{i}$$

for weak dissipation and unitary target

• Optimize dark state condition $\langle \hat{\mathbf{L}}^{\dagger} \hat{\mathbf{L}} \rangle = 0$ [Palao et al, PRA 77, 063412 (2008)]

 \Rightarrow Second order Krotov, inhomogeneous bw-propagation $_{[Reich \mbox{ et al}, \mbox{ JCP 136, 104103 (2012)}]}$

summary & conclusion

- Quantum trajectories are highly scalable approach to simulating open quantum systems (MPI!)
- Toolbox: QNET (Stanford) and QDYN (Kassel)
- Krotov's method allows for trajectory optimization (for any large open quantum system, not just networks)
- Grape/LBFGS: open question

summary & conclusion

- Quantum trajectories are highly scalable approach to simulating open quantum systems (MPI!)
- Toolbox: QNET (Stanford) and QDYN (Kassel)
- Krotov's method allows for trajectory optimization (for any large open quantum system, not just networks)
- Grape/LBFGS: open question

Thank you!