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Modeling Simulation & Optimization

QNET
Design and analysis of photonic 
circuit models

• QHDL model
• SLH formalism
• symbolic quantum algebra
• circuit component library
• visualization

yields Master equation of quantum 
network

https://github.com/mabuchilab/qnet

QDYN

http://bitly.com/agkoch-kassel

high performance quantum 
simulation and optimal control

• Spectral methods
• Chebychev/Newton propagator
• Krotov’s method
• Grape/LBFGS

Solves equation of motion and 
control problems

Python
Ecosystem

Fortran

jupyter

sympy

matplotlib
QuTip

QSD

https://github.com/mabuchilab/qsd-mpi
Quantum Trajectories solver

++

https://github.com/goerz/qdynpylib

clusterjob

https://github.com/goerz/clusterjob
Drive HPC compute jobs
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resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".

BLAIS et al. PHYSICAL REVIEW A 75, 032329 !2007"

032329-2

[Blais et al, PRA 75, 032329 (2007)]
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in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms
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0 =%"!r /2C is the rms
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tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms
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0 /b&0.2 V/m for typical realizations
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Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj
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−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
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takes the form
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!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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a two-node network

VOLUME 78, NUMBER 16 P HY S I CA L REV I EW LE T T ER S 21 APRIL 1997

Quantum State Transfer and Entanglement Distribution among Distant Nodes
in a Quantum Network

J. I. Cirac,1,2 P. Zoller,1,2 H. J. Kimble,1,3 and H. Mabuchi1,3

1Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106-4030
2Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

3Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125
(Received 12 November 1996)

We propose a scheme to utilize photons for ideal quantum transmission between atoms located at
spatially separated nodes of a quantum network. The transmission protocol employs special laser
pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into
a time-symmetric photon wave packet that will enter a cavity at the receiving node and be absorbed by
an atom there with unit probability. Implementation of our scheme would enable reliable transfer or
sharing of entanglement among spatially distant atoms. [S0031-9007(97)02983-9]

PACS numbers: 89.70.+c, 03.65.Bz, 42.50.Lc

We consider a quantum network consisting of spatially
separated nodes connected by quantum communication
channels. Each node is a quantum system that stores quan-
tum information in quantum bits and processes this in-
formation locally using quantum gates [1]. Exchange of
information between the nodes of the network is accom-
plished via quantum channels. A physical implementa-
tion of such a network could consist, e.g., of clusters of
trapped atoms or ions representing the nodes, with opti-
cal fibers or similar photon “conduits” providing the quan-
tum channels. Atoms and ions are particularly well suited
for storing qubits in long-lived internal states, and recently
proposed schemes for performing quantum gates between
trapped atoms or ions provide an attractive method for lo-
cal processing within an atomyion node [2–4]. On the
other hand, photons clearly represent the best qubit carrier
for fast and reliable communication over long distances
[5,6], since fast and internal-state-preserving transportation
of atoms or ions seems to be technically intractable.
To date, no process has actually been identified for

using photons (or any other means) to achieve efficient
quantum transmission between spatially distant atoms [7].
In this Letter we outline a scheme to implement this basic
building block of communication in a distributed quantum
network. Our scheme allows quantum transmission with
(in principle) unit efficiency between distant atoms 1 and
2 (see Fig. 1). The possibility of combining local quan-
tum processing with quantum transmission between the
nodes of the network opens the possibility for a variety
of novel applications ranging from entangled-state cryp-
tography [8], teleportation [9], and purification [10], and
is interesting from the perspective of distributed quantum
computation [11].
The basic idea of our scheme is to utilize strong coupling

between a high-Q optical cavity and the atoms [5] forming
a given node of the quantum network. By applying laser
beams, one first transfers the internal state of an atom
at the first node to the optical state of the cavity mode.
The generated photons leak out of the cavity, propagate

as a wave packet along the transmission line, and enter
an optical cavity at the second node. Finally, the optical
state of the second cavity is transferred to the internal state
of an atom. Multiple-qubit transmissions can be achieved
by sequentially addressing pairs of atoms (one at each
node), as entanglements between arbitrarily located atoms
are preserved by the state-mapping process.
The distinguishing feature of our protocol is that by

controlling the atom-cavity interaction, one can absolutely
avoid the reflection of the wave packets from the second
cavity, effectively switching off the dominant loss channel
that would be responsible for decoherence in the commu-
nication process. For a physical picture of how this can
be accomplished, let us consider that a photon leaks out of
an optical cavity and propagates away as a wave packet.
Imagine that we were able to “time reverse” this wave
packet and send it back into the cavity; then this would
restore the original (unknown) superposition state of the
atom, provided we would also reverse the timing of the
laser pulses. If, on the other hand, we are able to drive
the atom in a transmitting cavity in such a way that the
outgoing pulse were already symmetric in time, the wave
packet entering a receiving cavity would “mimic” this time
reversed process, thus “restoring” the state of the first atom
in the second one.
The simplest possible configuration of quantum trans-

mission between two nodes consists of two atoms 1 and
2 which are strongly coupled to their respective cavity
modes (see Fig. 1). The Hamiltonian describing the inter-
action of each atom with the corresponding cavity mode

FIG. 1. Schematic representation of unidirectional quantum
transmission between two atoms in optical cavities connected
by a quantized transmission line (see text for explanation).

0031-9007y97y78(16)y3221(4)$10.00 © 1997 The American Physical Society 3221

[Cirac et al, PRL 78, 3221 (1997)]

each node j (after adiabatic elimination):

Ĥj = −δâ†j âj − igj(t)(σ̂+âj − σ̂−â
†
j )

Lindblad operator
√
2κâj

input-output theory (SLH framework): [Gough, James]

Ĥ = Ĥ1 + Ĥ2 + iκ(â†1â2 − â1â
†
2)

Lindblad operator
√
2κ(â1 + â2)

challenges:

large combined Hilbert spaces (for larger networks)

inherently dissipative (at the same scale as interactions!)

Michael Goerz • Stanford/ARL • Optimal Control for Quantum Networks 7 / 18
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We propose a scheme to utilize photons for ideal quantum transmission between atoms located at
spatially separated nodes of a quantum network. The transmission protocol employs special laser
pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into
a time-symmetric photon wave packet that will enter a cavity at the receiving node and be absorbed by
an atom there with unit probability. Implementation of our scheme would enable reliable transfer or
sharing of entanglement among spatially distant atoms. [S0031-9007(97)02983-9]

PACS numbers: 89.70.+c, 03.65.Bz, 42.50.Lc

We consider a quantum network consisting of spatially
separated nodes connected by quantum communication
channels. Each node is a quantum system that stores quan-
tum information in quantum bits and processes this in-
formation locally using quantum gates [1]. Exchange of
information between the nodes of the network is accom-
plished via quantum channels. A physical implementa-
tion of such a network could consist, e.g., of clusters of
trapped atoms or ions representing the nodes, with opti-
cal fibers or similar photon “conduits” providing the quan-
tum channels. Atoms and ions are particularly well suited
for storing qubits in long-lived internal states, and recently
proposed schemes for performing quantum gates between
trapped atoms or ions provide an attractive method for lo-
cal processing within an atomyion node [2–4]. On the
other hand, photons clearly represent the best qubit carrier
for fast and reliable communication over long distances
[5,6], since fast and internal-state-preserving transportation
of atoms or ions seems to be technically intractable.
To date, no process has actually been identified for

using photons (or any other means) to achieve efficient
quantum transmission between spatially distant atoms [7].
In this Letter we outline a scheme to implement this basic
building block of communication in a distributed quantum
network. Our scheme allows quantum transmission with
(in principle) unit efficiency between distant atoms 1 and
2 (see Fig. 1). The possibility of combining local quan-
tum processing with quantum transmission between the
nodes of the network opens the possibility for a variety
of novel applications ranging from entangled-state cryp-
tography [8], teleportation [9], and purification [10], and
is interesting from the perspective of distributed quantum
computation [11].
The basic idea of our scheme is to utilize strong coupling

between a high-Q optical cavity and the atoms [5] forming
a given node of the quantum network. By applying laser
beams, one first transfers the internal state of an atom
at the first node to the optical state of the cavity mode.
The generated photons leak out of the cavity, propagate

as a wave packet along the transmission line, and enter
an optical cavity at the second node. Finally, the optical
state of the second cavity is transferred to the internal state
of an atom. Multiple-qubit transmissions can be achieved
by sequentially addressing pairs of atoms (one at each
node), as entanglements between arbitrarily located atoms
are preserved by the state-mapping process.
The distinguishing feature of our protocol is that by

controlling the atom-cavity interaction, one can absolutely
avoid the reflection of the wave packets from the second
cavity, effectively switching off the dominant loss channel
that would be responsible for decoherence in the commu-
nication process. For a physical picture of how this can
be accomplished, let us consider that a photon leaks out of
an optical cavity and propagates away as a wave packet.
Imagine that we were able to “time reverse” this wave
packet and send it back into the cavity; then this would
restore the original (unknown) superposition state of the
atom, provided we would also reverse the timing of the
laser pulses. If, on the other hand, we are able to drive
the atom in a transmitting cavity in such a way that the
outgoing pulse were already symmetric in time, the wave
packet entering a receiving cavity would “mimic” this time
reversed process, thus “restoring” the state of the first atom
in the second one.
The simplest possible configuration of quantum trans-

mission between two nodes consists of two atoms 1 and
2 which are strongly coupled to their respective cavity
modes (see Fig. 1). The Hamiltonian describing the inter-
action of each atom with the corresponding cavity mode

FIG. 1. Schematic representation of unidirectional quantum
transmission between two atoms in optical cavities connected
by a quantized transmission line (see text for explanation).
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quantum trajectories

Quantum trajectory: specific realization of an evolution in
Hilbert space, and (bath) measurement record

homodyne/heterodyne measurement
⇒ Itô Calculus, QSDE

photon counting ⇒ quantum jumps

. . . or a numerical tool for the ensemble dynamics!
(in lieu of master equation)

ensemble dynamics

ρ̂(t) =
1

N

N→∞∑
n=1

|Ψn(t)〉 〈Ψn(t)|

〈
Ô(t)

〉
= tr

[
ρ†Ô(t)

]
=

1

N

N→∞∑
n=1

〈
Ô(t)

〉
n

Michael Goerz • Stanford/ARL • Optimal Control for Quantum Networks 9 / 18



quantum trajectories

Quantum trajectory: specific realization of an evolution in
Hilbert space, and (bath) measurement record

homodyne/heterodyne measurement
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ρ†Ô(t)

]
=

1

N

N→∞∑
n=1

〈
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ρ†Ô(t)

]
=

1

N

N→∞∑
n=1

〈
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the quantum jump (MCWF) method

for each trajectory |Ψn〉:
[Dum et al. PRA 4879 (1992); Mølmer et al. JOSAB 10, 524 (1993)]

1 effective Hamiltonian Heff = Ĥ− i~
2

∑
i L̂
†
i L̂i

2 random number r ∈ [0, 1), propagate until
〈Ψ(tj)|Ψ(tj)〉 = r .

3 Apply an instantaneous quantum jump
|Ψ(tj)〉 → L̂n |Ψ(tj)〉 use L̂n with relative probability

〈Ψ(tj)|L̂
†
nL̂n|Ψ(tj)〉.

4 After the jump, normalize |Ψ(tj)〉, draw a new random
number r ∈ [0, 1) and continue the propagation.

Can we optimize over individual trajectories |Ψn〉?
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methods of optimal control – gradient-free

gradient-free: relies only on evaluation of functional

use e.g. Nelder-Mead simplex

CRAB: truncate the search space

structure. In particular the DMRG describes ground state
static properties of one-dimensional systems by means of a
matrix product state (MPS) [16]. The main characteristic of
a MPS is that the resources needed to describe a given
system depend only polynomially on the system size N,
due to the introduction of an ancillary dimension m that
determines the precision of the approximation. Since an
exact description requires exponentially increasing resour-
ces with the number of components N, the tensor network
approach results in an exponential gain in resources. Given
a system Hamiltonian, the best possible approximated
description of the system ground state—within the MPS
at fixed m—is determined by means of an efficient energy
minimization. With some slight modification, discretizing
the time T ¼ nsteps!t and performing a Trotter expansion,
the algorithm can be adapted to follow a state time evolu-
tion, the so-called tDMRG [13]. The tDMRG is a very
powerful numerical method for efficiently numerically
simulating the time evolution of one-dimensional many-
body quantum systems. The class of states and of time
evolutions that can be efficiently described with a small
error are determined by the presence of entanglement
between the different system components [12]. Here, we
will use the tDMRG for the simulation of cold atoms in
time-dependent optical lattices, which we feed into the
chopped random basis (CRAB) optimization algorithm as
described below.

CRAB method.—The general scenario of an optimal
control problem can be stated as follows: given a system
described by a Hamiltonian H depending on some control
parameters cjðtÞ with j ¼ 1; . . . ; NC, the goal is to find the
cj’s time dependence (pulse shape) that extremizes a given
figure of merit F , for instance, the final system energy,
state fidelity, or entanglement. We then start with an initial
pulse guess c0j ðtÞ and look for the best correction that has a
simple expression in a given functional basis. As an ex-
plicative example, here we focus on the case where the
correction is of the form cjðtÞ ¼ c0j ðtÞfjðtÞ, and the func-

tions fjðtÞ can be simply expressed in a truncated Fourier
space, depending on the expansion coefficients ~aj ¼ akj
(k ¼ 1; . . . ;Mj). In particular, in the following, we start
from an initial ansatz, e.g., an exponential or linear ramp,
and we introduce a correction of the form

fðtÞ ¼ 1

N

!
1þ

X

k

Ak sinð!ktÞ þ Bk cosð!ktÞ
"
: (1)

Here, k ¼ 1; . . . ;M, !k ¼ 2"kð1þ rkÞ=T are ‘‘rando-
mized’’ Fourier harmonics, T is the total time evolution,
rk 2 ½0:1& are random numbers with a flat distribution, and
N is a normalization constant to keep the initial and final
control pulse values fixed. The optimization problem is
then reformulated as the extremization of a multivariable
function F ðfAkg; fBkg; f!kÞg, which can be numerically
approached with a suitable method, e.g., steepest descent
or conjugate gradient [17]. When using CRAB together

with tDMRG, computing the gradient of F is extremely
resource consuming, if not impossible. Thus we resort to a
direct search method like the Nelder-Mead or Simplex
methods [17]. They are based on the construction of a
polytope defined by some initial set of points in the space
of parameters that ‘‘rolls down the hill’’ following prede-
fined rules until reaching a (possibly local) minimum (see
Fig. 1). Because of the fact that direct search methods are
based on many independent evaluations of the function to
be minimized, they can be efficiently implemented to-
gether with tDMRG simulations (and possibly performed
in parallel). We stress that the functional dependency of the
correction presented here [Eq. (1)] is one possible ap-
proach: different strategies might be explored. Indeed,
making a given choice confines the search of the optimal
driving field in a subspace of the whole space of functions
and the results might depend on this choice. On the other
hand, this approach simplifies the optimization problem
that would be otherwise computationally unfeasible when
tDMRG simulations are needed. As shown below, the
described choice allows us to perform a successful
optimization.
Optical-lattice system.—Very recently, the experimental

and theoretical analysis of the dynamics of cold atoms in
optical lattices has experienced a fast development, after
the experimental demonstration of coherent manipulation
of ultracold atoms in the seminal work of Ref. [18], where
a Bose-Einstein condensate is first loaded into a single
trap, and then a periodic lattice potential is slowly ramped
up, inducing a quantum phase transition to aMott insulator.
This is the enabling step for a wide range of experiments,
from transport or spectroscopy to quantum information
processing [19]. In most of these applications, it is essential
to achieve the lowest possible number of defects in the final
state, that is, to reach exactly a final state with fixed number
of atoms per site, e.g., unit filling. Up to now, this has been
pursued by limiting the process speed—the superfluid-
Mott insulator transition has been performed in about a
hundred milliseconds, with a density of defects typically of
the order of 10% [20].
Cold atoms in an optical lattice can be described by the

Bose-Hubbard model defined by the Hamiltonian [19,21]

FIG. 1 (color online). (a) An initial guess pulse c0ðtÞ is used as
a starting point. (b) The function F ð ~aÞ for the case ~a ¼ fa1; a2g
and the initial polytope (white triangle) are defined and moved
‘‘downhill’’ [darker gray (red) triangles] until convergence is
reached. (c) The final point is recast as the optimal pulse cðtÞ.

PRL 106, 190501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

190501-2

[Doria et al, PRL 106, 190501 (2011)]

Works great when there are only a
handful of control parameters.

Good for obtaining guess pulses!
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that would be otherwise computationally unfeasible when
tDMRG simulations are needed. As shown below, the
described choice allows us to perform a successful
optimization.
Optical-lattice system.—Very recently, the experimental

and theoretical analysis of the dynamics of cold atoms in
optical lattices has experienced a fast development, after
the experimental demonstration of coherent manipulation
of ultracold atoms in the seminal work of Ref. [18], where
a Bose-Einstein condensate is first loaded into a single
trap, and then a periodic lattice potential is slowly ramped
up, inducing a quantum phase transition to aMott insulator.
This is the enabling step for a wide range of experiments,
from transport or spectroscopy to quantum information
processing [19]. In most of these applications, it is essential
to achieve the lowest possible number of defects in the final
state, that is, to reach exactly a final state with fixed number
of atoms per site, e.g., unit filling. Up to now, this has been
pursued by limiting the process speed—the superfluid-
Mott insulator transition has been performed in about a
hundred milliseconds, with a density of defects typically of
the order of 10% [20].
Cold atoms in an optical lattice can be described by the

Bose-Hubbard model defined by the Hamiltonian [19,21]

FIG. 1 (color online). (a) An initial guess pulse c0ðtÞ is used as
a starting point. (b) The function F ð ~aÞ for the case ~a ¼ fa1; a2g
and the initial polytope (white triangle) are defined and moved
‘‘downhill’’ [darker gray (red) triangles] until convergence is
reached. (c) The final point is recast as the optimal pulse cðtÞ.
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methods of optimal control – gradient-based
typical functional: JT ({τk}),

τk =
〈
k tgt

∣∣∣ Û(T , 0)
∣∣∣ k〉

Grape/LBFGS: use gradient ∂JT
∂εj

[Khaneja et al, JMR 172, 296 (2005); de Fouquiéres et al, JMR 212, 412 (2011)]
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Krotov’s method: constructive pulse update
(time-continuous)

∆ε(t) ∝
N∑

k=1

〈
χ

(i)
k (t)

∣∣∣∣∣
(
∂Ĥ
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[Zhu et al, JCP 108, 1953 (1998); Palao, Kosloff, PRA 68 062308 (2003);
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|00〉 Ô |00〉

|01〉 Ô |01〉
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gradient-based trajectory optimization

Grape/LBFGS:
∂Ûj

∂εj
→ . . . ?

Krotov: ∂JT
∂〈φk |

∣∣∣
φ

(i)
k (T )

OK

Krotov optimization procedure

Each trajectory contributes to pulse update ∆ε(t) → average

cf. “ensemble optimization” for robustness
[Goerz et al., PRA 90, 032329 (2014)]
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∂Ûj

∂εj
→ . . . ?

Krotov: ∂JT
∂〈φk |

∣∣∣
φ

(i)
k (T )

OK

Krotov optimization procedure

Each trajectory contributes to pulse update ∆ε(t) → average

cf. “ensemble optimization” for robustness
[Goerz et al., PRA 90, 032329 (2014)]

JT ,sm =
1

N2

∣∣∣∣∣∑
k

τk

∣∣∣∣∣
2

→ − ∂JT ,sm
∂ 〈φk |

∣∣∣∣
φ

(i)
k (T )

=

(
1

N2

N∑
l=1

τl

)∣∣ktgt
〉
,

JT ,re =
1

N
Re
∑
k

τk → − ∂JT ,re
∂ 〈φk |

∣∣∣∣
φ

(i)
k (T )

=
1

2N

∣∣ktgt
〉

Michael Goerz • Stanford/ARL • Optimal Control for Quantum Networks 14 / 18



gradient-based trajectory optimization

Grape/LBFGS:
∂Ûj
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We propose a scheme to utilize photons for ideal quantum transmission between atoms located at
spatially separated nodes of a quantum network. The transmission protocol employs special laser
pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into
a time-symmetric photon wave packet that will enter a cavity at the receiving node and be absorbed by
an atom there with unit probability. Implementation of our scheme would enable reliable transfer or
sharing of entanglement among spatially distant atoms. [S0031-9007(97)02983-9]

PACS numbers: 89.70.+c, 03.65.Bz, 42.50.Lc

We consider a quantum network consisting of spatially
separated nodes connected by quantum communication
channels. Each node is a quantum system that stores quan-
tum information in quantum bits and processes this in-
formation locally using quantum gates [1]. Exchange of
information between the nodes of the network is accom-
plished via quantum channels. A physical implementa-
tion of such a network could consist, e.g., of clusters of
trapped atoms or ions representing the nodes, with opti-
cal fibers or similar photon “conduits” providing the quan-
tum channels. Atoms and ions are particularly well suited
for storing qubits in long-lived internal states, and recently
proposed schemes for performing quantum gates between
trapped atoms or ions provide an attractive method for lo-
cal processing within an atomyion node [2–4]. On the
other hand, photons clearly represent the best qubit carrier
for fast and reliable communication over long distances
[5,6], since fast and internal-state-preserving transportation
of atoms or ions seems to be technically intractable.
To date, no process has actually been identified for

using photons (or any other means) to achieve efficient
quantum transmission between spatially distant atoms [7].
In this Letter we outline a scheme to implement this basic
building block of communication in a distributed quantum
network. Our scheme allows quantum transmission with
(in principle) unit efficiency between distant atoms 1 and
2 (see Fig. 1). The possibility of combining local quan-
tum processing with quantum transmission between the
nodes of the network opens the possibility for a variety
of novel applications ranging from entangled-state cryp-
tography [8], teleportation [9], and purification [10], and
is interesting from the perspective of distributed quantum
computation [11].
The basic idea of our scheme is to utilize strong coupling

between a high-Q optical cavity and the atoms [5] forming
a given node of the quantum network. By applying laser
beams, one first transfers the internal state of an atom
at the first node to the optical state of the cavity mode.
The generated photons leak out of the cavity, propagate

as a wave packet along the transmission line, and enter
an optical cavity at the second node. Finally, the optical
state of the second cavity is transferred to the internal state
of an atom. Multiple-qubit transmissions can be achieved
by sequentially addressing pairs of atoms (one at each
node), as entanglements between arbitrarily located atoms
are preserved by the state-mapping process.
The distinguishing feature of our protocol is that by

controlling the atom-cavity interaction, one can absolutely
avoid the reflection of the wave packets from the second
cavity, effectively switching off the dominant loss channel
that would be responsible for decoherence in the commu-
nication process. For a physical picture of how this can
be accomplished, let us consider that a photon leaks out of
an optical cavity and propagates away as a wave packet.
Imagine that we were able to “time reverse” this wave
packet and send it back into the cavity; then this would
restore the original (unknown) superposition state of the
atom, provided we would also reverse the timing of the
laser pulses. If, on the other hand, we are able to drive
the atom in a transmitting cavity in such a way that the
outgoing pulse were already symmetric in time, the wave
packet entering a receiving cavity would “mimic” this time
reversed process, thus “restoring” the state of the first atom
in the second one.
The simplest possible configuration of quantum trans-

mission between two nodes consists of two atoms 1 and
2 which are strongly coupled to their respective cavity
modes (see Fig. 1). The Hamiltonian describing the inter-
action of each atom with the corresponding cavity mode

FIG. 1. Schematic representation of unidirectional quantum
transmission between two atoms in optical cavities connected
by a quantized transmission line (see text for explanation).

0031-9007y97y78(16)y3221(4)$10.00 © 1997 The American Physical Society 3221
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example: directional state transfer

Michael Goerz • Stanford/ARL • Optimal Control for Quantum Networks 15 / 18

VOLUME 78, NUMBER 16 P HY S I CA L REV I EW LE T T ER S 21 APRIL 1997

Quantum State Transfer and Entanglement Distribution among Distant Nodes
in a Quantum Network

J. I. Cirac,1,2 P. Zoller,1,2 H. J. Kimble,1,3 and H. Mabuchi1,3

1Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106-4030
2Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

3Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125
(Received 12 November 1996)

We propose a scheme to utilize photons for ideal quantum transmission between atoms located at
spatially separated nodes of a quantum network. The transmission protocol employs special laser
pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into
a time-symmetric photon wave packet that will enter a cavity at the receiving node and be absorbed by
an atom there with unit probability. Implementation of our scheme would enable reliable transfer or
sharing of entanglement among spatially distant atoms. [S0031-9007(97)02983-9]

PACS numbers: 89.70.+c, 03.65.Bz, 42.50.Lc

We consider a quantum network consisting of spatially
separated nodes connected by quantum communication
channels. Each node is a quantum system that stores quan-
tum information in quantum bits and processes this in-
formation locally using quantum gates [1]. Exchange of
information between the nodes of the network is accom-
plished via quantum channels. A physical implementa-
tion of such a network could consist, e.g., of clusters of
trapped atoms or ions representing the nodes, with opti-
cal fibers or similar photon “conduits” providing the quan-
tum channels. Atoms and ions are particularly well suited
for storing qubits in long-lived internal states, and recently
proposed schemes for performing quantum gates between
trapped atoms or ions provide an attractive method for lo-
cal processing within an atomyion node [2–4]. On the
other hand, photons clearly represent the best qubit carrier
for fast and reliable communication over long distances
[5,6], since fast and internal-state-preserving transportation
of atoms or ions seems to be technically intractable.
To date, no process has actually been identified for

using photons (or any other means) to achieve efficient
quantum transmission between spatially distant atoms [7].
In this Letter we outline a scheme to implement this basic
building block of communication in a distributed quantum
network. Our scheme allows quantum transmission with
(in principle) unit efficiency between distant atoms 1 and
2 (see Fig. 1). The possibility of combining local quan-
tum processing with quantum transmission between the
nodes of the network opens the possibility for a variety
of novel applications ranging from entangled-state cryp-
tography [8], teleportation [9], and purification [10], and
is interesting from the perspective of distributed quantum
computation [11].
The basic idea of our scheme is to utilize strong coupling

between a high-Q optical cavity and the atoms [5] forming
a given node of the quantum network. By applying laser
beams, one first transfers the internal state of an atom
at the first node to the optical state of the cavity mode.
The generated photons leak out of the cavity, propagate

as a wave packet along the transmission line, and enter
an optical cavity at the second node. Finally, the optical
state of the second cavity is transferred to the internal state
of an atom. Multiple-qubit transmissions can be achieved
by sequentially addressing pairs of atoms (one at each
node), as entanglements between arbitrarily located atoms
are preserved by the state-mapping process.
The distinguishing feature of our protocol is that by

controlling the atom-cavity interaction, one can absolutely
avoid the reflection of the wave packets from the second
cavity, effectively switching off the dominant loss channel
that would be responsible for decoherence in the commu-
nication process. For a physical picture of how this can
be accomplished, let us consider that a photon leaks out of
an optical cavity and propagates away as a wave packet.
Imagine that we were able to “time reverse” this wave
packet and send it back into the cavity; then this would
restore the original (unknown) superposition state of the
atom, provided we would also reverse the timing of the
laser pulses. If, on the other hand, we are able to drive
the atom in a transmitting cavity in such a way that the
outgoing pulse were already symmetric in time, the wave
packet entering a receiving cavity would “mimic” this time
reversed process, thus “restoring” the state of the first atom
in the second one.
The simplest possible configuration of quantum trans-

mission between two nodes consists of two atoms 1 and
2 which are strongly coupled to their respective cavity
modes (see Fig. 1). The Hamiltonian describing the inter-
action of each atom with the corresponding cavity mode

FIG. 1. Schematic representation of unidirectional quantum
transmission between two atoms in optical cavities connected
by a quantized transmission line (see text for explanation).

0031-9007y97y78(16)y3221(4)$10.00 © 1997 The American Physical Society 3221

[Cirac et al, PRL 78, 3221 (1997)]
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Time-symmetric solution to |10〉 → |01〉
with dark state condition L̂ |Ψ(t)〉 = 0
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density matrix optimization: |10〉〈10| → |01〉〈01| [Y. Ohtsuki]
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outlook

“Hybrid optimization” (combine gradient-free and
gradient-based methods); pulse smoothing

100 101 102 103

OCT iteration

10-5

10-4

10-3

10-2

10-1

o
p
ti
m
iz
a
ti
o
n
er
ro
r

Jgeo
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J sm
T (direct)

J sm
T (pre-opt.)

[Goerz et al, EPJ Quantum Tech. 2, 21 (2015)]

Optimize with non-Hermitian Hamiltonian

Ĥeff = Ĥ− i~
2

∑
i

L̂
†
i L̂i

for weak dissipation and unitary target

Optimize dark state condition
〈
L̂
†
L̂
〉

= 0
[Palao et al, PRA 77, 063412 (2008)]

⇒ Second order Krotov, inhomogeneous bw-propagation
[Reich et al, JCP 136, 104103 (2012)]
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summary & conclusion

Quantum trajectories are highly scalable approach to
simulating open quantum systems (MPI!)

Toolbox: QNET (Stanford) and QDYN (Kassel)

Krotov’s method allows for trajectory optimization
(for any large open quantum system, not just networks)

Grape/LBFGS: open question

Thank you!
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