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We study optimal quantum control of the dynamics of trapped Bose-Einstein condensates: The targets are
to split a condensate, residing initially in a single well, into a double well, without inducing excitation, and
to excite a condensate from the ground state to the first-excited state of a single well. The condensate is
described in the mean-field approximation of the Gross-Pitaevskii equation. We compare two optimization
approaches in terms of their performance and ease of use; namely, gradient-ascent pulse engineering (GRAPE)
and Krotov’s method. Both approaches are derived from the variational principle but differ in the way the
control is updated, additional costs are accounted for, and second-order-derivative information can be included.
We find that GRAPE produces smoother control fields and works in a black-box manner, whereas Krotov
with a suitably chosen step-size parameter converges faster but can produce sharp features in the control
fields.
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I. INTRODUCTION

Controlling complex quantum dynamics is a recurring
theme in many different areas of atomic, molecular, and optical
(AMO) physics and physical chemistry. Recent examples
include quantum state preparation [1,2], interferometry [3]
and imaging [4,5], or reaction control [6,7]. The central idea
of quantum control is to employ external fields to steer the
dynamics in a desired way [8,9]. The fields that realize the
desired dynamics can be determined by optimal control theory
(OCT) [10,11]. An expectation value that encodes the target
is then taken to be a functional of the external field which is
minimized or maximized. The target can be simply a desired
final state [10] or a unitary operator [12], a prescribed value
of energy or position [13], or an experimental signal such as a
pump-probe trace [14].

The algorithms that can be employed for optimizing the
target functional broadly fall into two categories—those where
changes in the field are determined solely by evaluating
the functional, such as simplex algorithms [13,15], and those
that utilize derivative information, such as Krotov’s method
[16,17] or gradient-ascent pulse engineering (GRAPE) [18],
possibly combined with quasi-Newton methods [19,20]. The
solutions that one obtains typically depend not only on the
target functional but also on the specific algorithm that is
employed and the initial-guess field. This is due to the fact that
numerical optimization is always a local search which may find
one of possibly many optimal solutions or get stuck in a local
extremum. It is thus important to understand which features
of an optimal control solution are due to the optimization
procedure and which reflect truly physical properties of the
quantum system.

For example, when seeking to identify, by use of optimal
control theory, the quantum speed limit, i.e., the shortest
possible time in which a quantum operation can be carried
out [21], the answer should be independent of the algorithm.
Moreover, in view of employing calculated solutions in an
experiment, conditions such as limited power, limited time
resolution, or limited bandwidth need to be met. The way in

which the various optimization approaches can accommodate
such requirements differ greatly.

Here, we study control of a Bose-Einstein condensate in a
magnetic microtrap, comparing several variants of a GRAPE-
type algorithm [22,23] with Krotov’s method [16,17,24]. We
consider two targets—splitting the condensate, which resides
initially in the ground state of a single well, into a double well,
without inducing excitation, and exciting the condensate from
the ground to the first-excited state of a single well. The latter
is important for stimulated processes in matter waves, whereas
the former presents a crucial step in interferometry [25–27].
A challenging aspect of controlling a condensate is the
nonlinearity of the equation of motion which can compromise
or even prevent convergence of the optimization [17]. The
two methods tackle this problem in different ways: GRAPE
by computing the search direction for new control fields
within the framework of Lagrange parameters and submitting
the optimal control search to generic minimization routines
[22,28], Krotov’s method by accounting for the nonlinearity
of the equations of motion in the monotonicity conditions
when constructing the algorithm [16,17,24]. Furthermore, the
methods differ in the way in which additional requirements
such as smoothness of the control can be accounted for. We
compare the two optimization approaches with respect to the
solutions they yield as well as their performance and ease of
use. Our study extends an earlier comparison of GRAPE-type
algorithms with Krotov’s method [19] that was concerned with
the linear Schrödinger equation and with finite-size (spin-type)
quantum systems.

Our paper is organized as follows: After introducing the
equation of motion for the condensate dynamics together
with the control targets in Sec. II, we briefly review the two
optimization schemes in Sec. III. Section IV presents our
results for wave-function splitting and shaking. Moreover, we
investigate the influence of the nonlinearity, the performance
of the two algorithms, and the smoothness of the optimized
control in Secs. IV B to IV D. Our conclusions are presented
in Sec. V.
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II. MODEL AND OPTIMIZATION PROBLEM

In this paper we consider a quasi-one-dimensional (quasi-
1D) condensate residing in a magnetic confinement potential
V (x,λ(t)) that can be controlled by some external control
parameter λ(t) [2,22,23,29]. We describe the condensate
dynamics within the mean-field framework of the Gross-
Pitaevskii equation, where ψ(x,t) is the condensate wave
function, normalized to one, whose time evolution is governed
by [30] (� = 1)

i
∂ψ (x,t)

∂t
=

[
− 1

2M

∂2

∂x2
+ V (x,λ (t) ) + κ|ψ (x,t) |2

]
×ψ (x,t) . (1)

The first term on the right-hand side is the operator for the
kinetic energy, the second one is the confinement potential,
and the last term is the nonlinear atom-atom interaction in
the mean-field approximation. M is the atom mass and κ is
the strength of the nonlinear atom-atom interactions, which
is related to the effective one-dimensional interaction strength
U0 and the number of atoms N through κ = U0(N − 1) [31].

We can now formulate our optimal control problem.
Suppose that the condensate is initially described by the wave
function ψ(x,0) = ψ0(x) and the potential is varied in the
time interval [0,T ]. We are now seeking for an optimal time
variation of λ(t) that brings the terminal wave function ψ(x,T )
as close as possible to a desired wave function ψd (x). To rate
the success for a given control, we introduce the cost function

JT (ψ(T )) = 1
2 [1 − |〈ψd |ψ(T )〉|2], (2)

which becomes zero when the terminal wave function matches
the desired one up to an arbitrary phase. Optimal control theory
aims at a λOCT(t) that minimizes Eq. (2).

III. OPTIMIZATION METHODS

In this paper, we apply two different optimal-control
approaches; namely, a gradient-ascent-pulse-engineering
(GRAPE) scheme [18] and Krotov’s method [16,17,24], which
is discussed separately below. An overview of the control
approaches is given in Table I.

A. GRAPE: Functional and optimization scheme

The GRAPE scheme for Bose-Einstein condensates has
been presented in detail elsewhere [22,23,29,32], for this

reason we only briefly introduce the working equations.
Experimentally, strong variations of the control parameter are
difficult to achieve. Therefore, we add to the cost function an
additional term [22,33,34],

J (ψ(T ),λ) = JT (ψ(T )) + γ

2

∫ T

0
[λ̇(t)]2dt. (3)

Mathematically, the additional term penalizes strong variations
of the control parameter and is needed to make the OCT
problem well posed [22,33,34]. Through γ it is possible to
weight the relative importance of wave-function matching
and control smoothness. Below, we set γ � 1 such that J

is dominated by the terminal cost JT .
In order to bring the system from the initial state ψ0 to

the terminal state ψ(T ) we have to fulfill the Gross-Pitaevskii
equation, which enters as a constraint in our optimization
problem. The constrained optimization problem can be turned
into an unconstrained one by means of Lagrange multipliers
p(x,t), whose time evolution is governed by [22]

iṗ =
(

− 1

2M

∂2

∂x2
+ V (x,λ(t)) + 2κ|ψ |2

)
p + κψ2p∗, (4)

subject to the terminal condition p(T ) = i〈ψd |ψ(T )〉ψd . The
optimal control problem is then composed of the Gross-
Pitaevskii equation (1) and Eq. (4), which must be fulfilled
simultaneously together with [22]

γ λ̈ = −Re〈p|∂V

∂λ
|ψ〉 (5)

for the optimal control. This expression differs from standard
GRAPE [18] and results from minimizing changes in the
control; cf. Eq. (3).

This set of equations can be also employed for a nonoptimal
control where Eq. (5) is not fulfilled. In this case Eq. (1) is
solved forwards in time and Eq. (4) backwards in time, and
the search direction ∇λJ for an improved control is calculated
from one of the Eqs. [22,23,34]:

∇λJ = −γ λ̈ − Re〈p|∂V

∂λ
|ψ〉 for L2 norm, (6)

− d2

dt2
[∇λJ ] = −γ λ̈ − Re〈p|∂V

∂λ
|ψ〉 for H 1 norm. (7)

These two expressions are obtained by interpreting, on the
right-hand side of Eq. (3), the integral

∫ T

0 [λ̇]2dt = 〈λ̇,λ̇〉L2 =
〈λ,λ〉H 1 in terms of an L2 or H 1 norm [31,34]. The H 1 norm

TABLE I. Optimization approaches used in this paper. For each algorithm, we specify whether a line search is used, which free parameter
is available to influence the optimization, the order of the derivative for the determination of the new control parameter, the penalty term that
is added to Eq. (2), with �λ = λ − λref , the equation for the cost function, the type of the update of the control, and the update equation used
in our simulations.

Line Free Penalty Update
Algorithm search parameter Deriv. Penalty equation Update equation

GRAPE grad L2 Yes γ 1 λ̇2 Eq. (3) Concurrent Eq. (6)
GRAPE grad H1 Yes γ 1 λ̇2 Eq. (3) Concurrent Eq. (7)
GRAPE BFGS L2 Yes γ 2 λ̇2 Eq. (3) Concurrent Eq. (6)
GRAPE BFGS H1 Yes γ 2 λ̇2 Eq. (3) Concurrent Eq. (7)
Krotov No k 1 (�λ)2 Eq. (9) Sequential Eq. (10)
KBFGS No k 2 (�λ)2 Eq. (9) Sequential Eq. (38) of Ref. [20]
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implies that one additionally has to solve a Poisson equation;
see the derivative operator on the left-hand side of Eq. (7). This
generally results in a much smoother time dependence of the
control parameters while the additional numerical effort for
solving the Poisson equation is negligible. As for an optimal
control, both Eqs. (6) and (7) yield ∇λJ = 0.

Here we solve the optimal control equations using the
Matlab toolbox OCTBEC [23]. The ground and desired states
of the Gross-Pitaevskii equation are computed by using the
optimal damping algorithm [23,35]. The control parameters
are obtained iteratively by using either a conjugate gradient
method (GRAPE grad), which only uses first-order informa-
tion, or a quasi-Newton Broyden-Fletcher-Goldfarb-Shanno
(BFGS) scheme [36] (GRAPE BFGS), which also takes
into account second-order information via an approximated
Hessian. In both cases, the optimization employs a line search
to determine the optimal step size in the direction of a given
gradient. The pulse update is calculated for all time points
simultaneously, making the GRAPE schemes concurrent.

B. Krotov’s method: Functional and optimization scheme

Krotov’s method [16] provides an alternative optimal
control implementation. The main idea is to add to Eq. (2)
a vanishing term [16,17,24], which is chosen such that the
minimum of the new function is also a minimum of J .
However, for nonoptimal λ(t) one can devise a scheme that
always gives a new control corresponding to a lower cost
function. Thus, Krotov’s method leads to a monotonically
convergent optimization algorithm that is expected to exhibit
much faster convergence.

Our implementation closely follows Refs. [17,20,24].
Specifically, the cost reads

J (ψ(T ),λ) = JT (ψ(T )) +
∫ T

0

[λ (t) − λref (t)]2

S (t)
dt, (8)

where the reference field λref(t) is typically chosen to be the
control from the previous iteration [37]. The second term in
Eq. (8) penalizes changes in the control from one iteration to
the next and ensures that, as an optimum is approached, the
value of the functional is increasingly determined by only JT .
S(t) = ks(t) is a shape function that controls the turning on
and off of the control fields, k is a step-size parameter, and
s(t) ∈ [0,1] is bound between 0 and 1.

Let ψ (i)(t) and λ(i)(t) denote the wave function and control
parameter, respectively, in the ith iteration of the optimal
control loop. To get started, we first solve for an initial
guess λ(0)(t) the Gross-Pitaevskii equation (1) and the adjoint
equation (4) for the costate p(t), which is backward propagated
in time with the same terminal condition as in GRAPE in order
to obtain ψ (0)(t) and p(0)(t). In the next step, we solve the
Gross-Pitaevskii equation simultaneously with the equation
for the new control field

λ(i+1)(t)

= λ(i)(t) + S(t)Re〈p(i)(t)|
[
∂V

∂λ

]
λ(i+1)(t)

|ψ (i+1)(t)〉

+ Re
σ (t)

2i
〈�ψ(t)|

[
∂V

∂λ

]
λ(i+1)(t)

|ψ (i+1)(t)〉, (9)

where ψ (i+1)(t) is obtained by propagating ψ(t = 0) forward
in time using the updated pulse.1 The fact that ψ (i+1)(t) appears
on the right-hand side of the update equation implies that the
update at a given time t depends on the updates at all earlier
times, making Krotov’s method sequential. This type of update
makes it nonstraightforward to include a cost term on the
derivative of the control as in Eq. (3), since the derivative at a
given time t requires knowledge of past and future values of
ψ(t).

The last term in Eq. (9) with �ψ(t) = ψ (i+1)(t) − ψ (i)(t)
is generally needed to ensure convergence in presence of the
nonlinear mean-field term κ|ψ(t)|2 of the Gross-Pitaevskii
equation. Convergence is achieved through a proper choice
of σ (t) [17,24]. In this work we neglect this additional
contribution for simplicity, as it is of only minor importance
for the moderate κ values of our present concern.

The derivative ∂V /∂λ in Eq. (9) has to be computed for
λ(i+1)(t), thus leading to an implicit equation for λ(i+1)(t).
When k is chosen sufficiently small, such that the control
parameter varies only moderately from one iteration to the
next, one can obtain the new control fields approximately from

λ(i+1)(t) ≈ λ(i)(t) + S(t)Re〈p(i)(t)|
[
∂V

∂λ

]
λ(i)(t)

|ψ (i+1)(t)〉.

(10)

Otherwise one can employ an iterative Newton scheme for the
calculation of λ(i+1)(t), as briefly described in Appendix A. In
all our simulations we found Eq. (10) to provide sufficiently
accurate results. Once the new wave functions ψ (i+1)(t) and
control parameters λ(i+1)(t) are computed, we get the adjoint
variables p(i+1)(t) through the solution of Eq. (4) and continue
with the Krotov optimization loop until the cost function
J is small enough or a certain number of iterations is
exceeded.

As a variant, we also use a combination of Krotov’s
method with the BFGS method (KBFGS) [20]. It includes an
approximated Hessian via the Krotov gradient as an additional
term in the update equation (9). However, for technical reasons
and differently from the GRAPE BFGS algorithm, no line
search is employed.

IV. RESULTS

In this paper, we consider two control problems. The first
one is condensate splitting, where the condensate initially
resides in one well which is subsequently split into a double
well. In our simulations we employ the confinement potential
of Lesanovsky et al. [38] where the control parameter λ(t)
is associated with a radio frequency magnetic field [22]. The
objective is to bring at the terminal time T the condensate
wave function to the ground state of the double-well potential.

1The costates of this work and of Ref. [24] are related through
p = iχ . With this definition the adjoint equation (4) and the terminal
condition p(T ) are the same for GRAPE and Krotov. As consequence,
the scalar products on the right-hand side of Eq. (9) involve the real
part rather than the imaginary part.
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FIG. 1. (Color online) Wave-function splitting through the trans-
formation of the confinement potential from a single to a double well.
(a) The solid lines report the control parameters λ(t) for the GRAPE
and Krotov optimizations, respectively. The potential is held constant
after the terminal time T = 2 ms. The dashed line shows the shape
function s(t) of Eq. (8) used in our version of Krotov’s method, scaled
by a factor of 0.4 for better visibility. (b), (c) Density plots of the
condensate density n(x,t) = |ψ(x,t)|2 during the splitting. The solid
lines show the confinement potentials at three selected times and the
time variation of the potential minima. (d), (e) Terminal (solid lines)
and desired (dashed lines) densities, which are indistinguishable. In
the optimization we set γ = 10−6 and k = 10−3.

In the second control problem the condensate wave function
is excited from the ground to the first-excited state of a single-
well potential. The confinement potential is an anharmonic
single-well potential; details and a parametrized form of V (x)
can be found in Refs. [2,23,29]. The shakeup is achieved by
displacing the potential origin according to V (x − λ(t)), where
λ(t) now corresponds to the position of the potential minimum,
i.e., through wave-function shaking. Experimental realizations
of such shaking protocols have been reported in Refs. [2,3,29].

In our simulations, GRAPE and Krotov start with the same
initial guess. The terminal time is set to T = 2 ms throughout.
Unless stated differently, we use a nonlinearity κ/� = 2π ×
250 Hz (κ = π/2 for units with � = 1 and time measured in
milliseconds, as used in our simulations [23]).

A. Splitting vs shaking

Figure 1(a) shows the controls obtained from our GRAPE
and Krotov optimizations for condensate splitting, together
with [Figs. 1(b) and 1(c)] the density maps of the condensate
wave function. The potential is held constant after the terminal
time T = 2 ms of the control process. Figures 1(d) and 1(e)
show the square moduli of the terminal (solid lines) and
desired (dashed lines) condensate wave functions, which are
almost indistinguishable, thus demonstrating the success of
both control protocols. This can be also seen from the density
maps which show no time variations at later times, when the
potential is held constant, in accordance to the fact that the
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FIG. 2. (Color online) Cost function versus number of solved
equations (either Gross-Pitaevskii or adjoint equation) for GRAPE
and Krotov. For GRAPE, one optimization iteration consists of
numerous solutions of the Gross-Pitaevskii equation (1) during a line
search, which are followed by a solution of the adjoint equation (4)
once a minimum is found, to obtain a new search direction ∇λJ .
For Krotov one optimization iteration consists of a Gross-Pitaevskii
solution, subject to Eq. (10), and a subsequent solution of the
adjoint equation (4). In our simulations we use k = 10−3. The
dashed lines report results of simulations with a larger nonlinearity
κ/� = 2π × 1000 Hz. In the legend we report the κ values in
units used in our simulations, with � = 1 and time measured in
milliseconds [23].

terminal wave function is the ground state of the double-well
trap.

Figure 2 compares the efficiency of the GRAPE and Krotov
optimizations. We plot the cost function JT versus the number
n of equations solved during optimization. For both GRAPE
and Krotov, n counts the solutions of either the Gross-
Pitaevskii or the adjoint equation. The actual computer run
times depend on the details of the numerical implementation
but are comparable for both schemes. As can be seen in Fig. 2,
in the GRAPE optimization the cost function decreases in large
steps after a given number of solved equations, whereas in
the Krotov optimization JT decreases continuously. The cost
evolution of GRAPE can be attributed to the BFGS search
algorithm, where a line search is performed along a given
search direction. Once the minimum is found, the step is
accepted (JT drops) and a new search direction is obtained
through the solution of the adjoint equation. In contrast,
the Krotov algorithm is constructed such that JT decreases
monotonically in each iteration step. Altogether, GRAPE and
Krotov optimizations perform equally well.

In comparison to condensate splitting, the shakeup process
is a considerably more complicated control problem. Figure 3
shows the optimized control parameters as well as the time
evolution of the condensate densities. Both GRAPE and
Krotov succeed comparably well. Regarding the control fields,
the GRAPE one is smoother than the Krotov one, due to the
penalty term on λ̇(t) in Eq. (3). From Fig. 4 we observe that
a much higher number of optimization iterations is needed, in
comparison to wave-function splitting, for both optimization
methods to significantly reduce JT . Initially, JT decreases
more rapidly for the Krotov optimization, but after a larger
number n of solved equations, say around n ∼ 600, GRAPE
performs better.
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FIG. 3. (Color online) Same as Fig. 1 but for shaking process.

B. Influence of nonlinearity

We investigate the influence of the nonlinear atom-atom
interaction on the convergence of the optimization loop. The
dashed lines in Fig. 2 report results for splitting simulations
with a larger nonlinearity κ/� = 2π × 1000 Hz. While the
GRAPE convergence depends only weakly on κ , Krotov
converges significantly slower for larger κ values.

Things are different for the shaking shown in Fig. 4. While
the GRAPE performance again depends only weakly on κ ,
Krotov converges faster with increasing κ . Because of the
lack of a line search in the Krotov algorithm, the convergence
behavior is far more dependent on specific features of the
control landscape which depend strongly on κ .

C. Convergence behavior

Next, we inquire into the details of the convergence proper-
ties for the optimization of the shakeup process. By comparing
GRAPE with Krotov, we will identify the advantages and
disadvantages of the respective optimization methods.

Figure 5(a) shows the terminal cost function JT versus
the number of solved equations of motion n for the different
GRAPE schemes. It is evident that the conjugate gradient
solutions reach a plateau after a certain number of iterations.
In contrast, the BFGS solutions decrease significantly even at
later stages of the optimization. We attribute this behavior
to the use of the second-order-derivative information. The
GRAPE BFGS scheme, which estimates the Hessian of J

in addition to ∇λJ , can take larger steps to cross flat regions
of J , contrary to the (first-order) GRAPE gradient scheme,
which gets stuck.

Figure 5(b) shows the control fields for the GRAPE
BFGS schemes. Although both optimization strategies per-
form equally well, the solutions obtained with the H 1 norm
are smoother and probably better suited for experimental
implementation.

Figures 6(a) and 6(b) present JT versus n and the control
parameters for the Krotov optimization, respectively. The solid
line with k = 0.005 in Fig. 6(a) is identical to the one shown
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FIG. 4. (Color online) Same as Fig. 2 but for shaking process.
We use k = 5 × 10−3.

in Fig. 4. When we increase k (black line), the cost function
drops more rapidly. However, we found that larger k values can
lead to sharp variations in λ(t) which might be problematic for
experimental implementations, as is discussed in more detail
below.

In Fig. 6 we additionally display results for a simulation
using a combination of Krotov’s method with the BFGS
scheme (KBFGS) [20]. The performance of KBFGS is similar
to the simpler optimization procedure of Eq. (10), a finding
in accordance with Ref. [20]. We attribute this to the fact that
within the Krotov scheme only a small portion of the control
landscape is explored, because the monotonic convergence
enforces small control updates, in contrast to GRAPE where
larger regions are scanned by the line search. As consequence,
the improvement in the Krotov search direction via the Hessian
is minimal.

Finally, the dashed line for adaptive k shows results for
an optimization that starts with a small k value, which
subsequently increases in each iteration until the cost decreases
by a desired amount (here 2.5%) within one iteration. This k

value is then kept constant for the rest of the optimization.
The idea behind this strategy is that the choice of k is crucial
for convergence, but the optimal value is different for each
problem. Generally, finding a suitable value for k requires
some trial and error.

D. Features of the control

For many experimental implementations it is indispensable
to use smooth control parameters. In the following we
investigate the smoothness of the optimal controls obtained
by the different optimization methods.

Figure 7(a) shows for GRAPE BFGS H1 the evolution of the
λ(t) values during optimization. One observes that, during the
first few iterations, the characteristic features of λ(t) emerge,
which then become refined in the course of further iterations.
Figure 7(b) reports the power spectra (square moduli of Fourier
transforms) of the λ(t) history during optimization. During the
first, say, 20 iterations the Fourier-transformed control pa-
rameter λ̃(ν) spectrally broadens, indicating the emergence of
sharp features during optimization. With increasing iterations
the spectral width of λ̃(ν) remains approximately constant.

Results of the GRAPE BFGS L2 optimization are shown
in Figs. 7(c) and 7(d). We observe that, in contrast to the
H1 results, λ(t) acquires sharp features during optimization,
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FIG. 5. (Color online) (a) Cost function versus number of solved
equations for conjugate gradient (grad) and BFGS optimization
schemes, and for search directions obtained from Eqs. (6) and (7)
with H 1 or L2 norm, respectively. (b) Optimal control parameters
λ(t) for BFGS solutions.

as also reflected by the broad power spectrum. This is
because initially the gradient ∇λJ , which determines the
search direction for improved control parameters, exhibits
strong variations. These variations are washed out in the H1
optimization through the solution of the Poisson equation [see
Eq. (7)], leading to significantly smoother control parameters.

In GRAPE, the user must additionally provide the weight-
ing factor γ of Eq. (3) that determines the relative importance
of terminal cost and control smoothness. For the problems
under study, we found that the performance of GRAPE does
not depend sensitively on the value of γ , and we usually use
a small value such that the cost is dominated by the terminal
cost.

Figures 8(a) and 8(c) show the λ(t) history during a Krotov
optimization for different step sizes k, and Figs. 8(b) and 8(d)
report the corresponding power spectra. In comparison to
the GRAPE BFGS H1 optimization, the power spectra are
significantly broader, in particular for the larger k values. This
is due to the fact that, in the functional used for the Krotov
optimization, there is no penalty term that enforces smoothness
of the control (and thus a narrow spectrum).

The choice of the step size k is rather critical for the
Krotov performance. With increasing k the cost function
decreases more rapidly during optimization. However, values
of k that are too large can lead to numerical instabilities. These
instabilities result from the discretization of the update equa-
tion; mathematically, Krotov is only guaranteed to converge
monotonically for any value of k if the control problem is
continuous.

One might wonder whether a combination of both ap-
proaches would give the best of two worlds. In Fig. 9 we
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FIG. 6. (Color online) Same as Fig. 5 but for Krotov optimiza-
tion. We investigate the influence of different mixing parameters k

between the old and new control fields [see Eq. (10)], as well as
a scheme with an adaptive k choice (see text for details). KBFGS
reports the optimization result for a combination of Krotov’s method
with BFGS [20].

present results for simulations where we start with a Krotov
optimization and switch to GRAPE after a given number of
iterations. As can be seen, the performance of this combined
optimization does not offer a particular advantage over genuine
GRAPE or Krotov optimizations. This is probably due to
differences between the optimal control fields λ(t) obtained
by the two approaches, such that λ(t) needs to be significantly
modified when changing from one scheme to the other. In
addition, the BFGS search algorithm of GRAPE uses the
information of previous iterations in order to estimate the
Hessian of the control space, and this information is missing
when changing schemes.

V. CONCLUSIONS AND OUTLOOK

Based on the two examples investigated in the previous
section; namely, wave-function splitting and shaking in a
magnetic microtrap, we now set out to analyze the advantages
and disadvantages of the GRAPE and Krotov optimization
methods which are tied to the functional that is minimized in
each case.

First, when the optimization converges fast to an optimal
solution, such as for wave-function splitting investigated in
Sec. IV A, both optimization algorithms perform equally well,
even without carefully tuning the free parameters γ or k. For
such problems, the choice of algorithm is a matter of personal
preference. On the other hand, for optimization problems with
slow convergence, such as wave-function shaking, more care
has to be taken. Specifically, there are significant differences
between the two algorithms in terms of free parameters vs
speed of convergence as well as possible cost functionals vs
features of the obtained optimal control.
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FIG. 7. (Color online) (a), (c) Evolution of control parameters during the optimization process for GRAPE. (b), (d) Density plot of power
spectra of the control parameters displayed in panels (a) and (c). We use a logarithmic color scale. In panels (b) and (d) the numbers of
iterations are chosen such that the final cost function JT becomes approximately 10−2, the numbers of solved equations (see Figs. 2 and 4) are
approximately (b) 500 and (d) 700.

While GRAPE BFGS utilizes a line search to ensure
monotonic convergence and to obtain the optimal step size
in each iteration, the speed of convergence in Krotov’s method
is mainly determined by the free parameter k. On the one hand
this means that GRAPE BFGS works better “out of the box”
since it automatically determines the best step size in each
step. On the other hand, the convergence is slowed down due
to the necessity of a line search.

It is also evident from our results that both algorithms
yield controls with features that can be understood in terms of
additional costs introduced in the functional. For GRAPE we
use a cost that penalizes a large derivative of the control which
results in smooth controls in the end. For Krotov’s method we
employ a penalty on changes in the amplitude of the control

in each iteration. Correspondingly, this leads to controls that
have a smaller integrated intensity and come at the cost of a
less smooth control.

In principle it is conceivable to modify the Krotov algorithm
to take into account an additional cost term on the derivative
of the control. While we conjecture that this will lead to
controls that are comparable with those obtained in the GRAPE
framework, the necessary modification of the Krotov algorithm
is beyond the scope of the current work.

In the context of controlling Bose-Einstein condensates
with experimentally smooth controls, the optimization with
the GRAPE BFGS method, a functional enforcing smoothness,
and use of the H 1 norm appears to be the method of choice. It
is a black-box scheme with practically no problem-dependent
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FIG. 8. (Color online) Same as Fig. 7 but for Krotov optimization. The numbers of solved equations are (b) 600 and (d) 400.
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FIG. 9. (Color online) Same as Fig. 4, but for a combined
GRAPE-Krotov scheme where one initially starts with the Krotov
method and switches to GRAPE after a given number of iterations.

parameters, it gives the desired smooth control fields, and it
works for various nonlinearity parameters κ .

In contrast, the Krotov optimization without an appropriate
penalty term in the functional can converge faster but usually

also leads to sharp features in the control. A sensitive choice
of the step size k is indispensable to achieve a compromise
between fast convergence and smoothness. If smoothness is not
an issue or extremely fast convergence is needed, the Krotov
method is preferable.

A combination of GRAPE and Krotov in the sense of
switching from one method to the other during the optimization
did not result in any significant gain. This is explained by
the different control solutions that are found by the different
methods which do not easily facilitate a transition between
them. It points to the fact that many control solutions exist,
and which solution is identified by the optimization depends
strongly on the additional constraints [39] as well as the
optimization method.
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APPENDIX

In this appendix we show briefly how to numerically solve the equation

λ(i+1)(t) = λ(i)(t) + S(t)Re〈p(i)(t)|
[
∂V

∂λ

∣∣∣∣
λ(i+1)(t)

]
|ψ (i+1)(t)〉, (A1)

which differs from Eq. (10) in that the potential derivative is evaluated for λ(i+1)(t). Things can be easily generalized for the
additional σ (t) term of Eq. (9). Let λ0(t) denote an initial guess for the solution of Eq. (A1), e.g., the solution of Eq. (10). We
now set λ(i+1)(t) = λ0(t) + δλ(t), where δλ(t) is assumed to be a small quantity. Thus, we can expand the second term on the
right-hand side of Eq. (A1) in lowest order of δλ(t) to obtain

λ0(t) + δλ(t) ≈ λ(i)(t) + S(t)Re〈p(i)(t)|
[
∂V

∂λ

∣∣∣∣
λ0(t)

+ ∂2V

∂λ2

∣∣∣∣
λ0(t)

δλ(t)

]
|ψ (i+1)(t)〉. (A2)

Separating the contributions of δλ from the rest, we get(
1 − S(t)Re〈p(i)(t)|

[
∂2V

∂λ2

∣∣∣∣
λ0(t)

]
|ψ (i+1)(t)〉

)
δλ(t) ≈ −[λ0(t) − λ(i)(t)] + S(t)〈p(i)(t)|

[
∂V

∂λ

∣∣∣∣
λ0(t)

]
|ψ (i+1)(t)〉, (A3)

which can be solved for δλ(t). If |δλ(t)| < ε is smaller than some small tolerance ε, we set λ(i+1)(t) → λ0(t) + δλ(t). Otherwise
we set λ0(t) → λ0(t) + δλ(t) and repeat the Newton iteration until convergence. Typically only few iterations are needed to reach
tolerances of the order of ε = 10−6.

[1] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk,
S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune
et al., Nature (London) 477, 73 (2011).
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