
Quantum Science and Technology

PAPER

Efficient optimization of state preparation in
quantum networks using quantum trajectories
To cite this article: Michael H Goerz and Kurt Jacobs 2018 Quantum Sci. Technol. 3 045005

 

View the article online for updates and enhancements.

Related content
Controlling open quantum systems: tools,
achievements, and limitations
Christiane P Koch

-

Optimal control theory for a unitary
operation under dissipative evolution
Michael H Goerz, Daniel M Reich and
Christiane P Koch

-

Quantum simulation of a quantum
stochastic walk
Luke C G Govia, Bruno G Taketani, Peter
K Schuhmacher et al.

-

This content was downloaded from IP address 132.174.251.2 on 20/08/2018 at 20:06

https://doi.org/10.1088/2058-9565/aace16
http://iopscience.iop.org/article/10.1088/0953-8984/28/21/213001
http://iopscience.iop.org/article/10.1088/0953-8984/28/21/213001
http://iopscience.iop.org/article/10.1088/1367-2630/16/5/055012
http://iopscience.iop.org/article/10.1088/1367-2630/16/5/055012
http://iopscience.iop.org/article/10.1088/2058-9565/aa540b
http://iopscience.iop.org/article/10.1088/2058-9565/aa540b
http://oas.iop.org/5c/iopscience.iop.org/981085138/Middle/IOPP/IOPs-Mid-QST-pdf/IOPs-Mid-QST-pdf.jpg/1?


QuantumSci. Technol. 3 (2018) 045005 https://doi.org/10.1088/2058-9565/aace16

PAPER

Efficient optimization of state preparation in quantum networks
using quantum trajectories

MichaelHGoerz1,2 andKurt Jacobs2,3,4

1 Edward L. Ginzton Laboratory, StanfordUniversity, Stanford, CA 94305,United States of America
2 U.S. ArmyResearch Laboratory, Computational and Information SciencesDirectorate, Adelphi,MD20783,United States of America
3 Department of Physics, University ofMassachusetts at Boston, Boston,MA02125,United States of America
4 Hearne Institute for Theoretical Physics, Louisiana StateUniversity, BatonRouge, LA 70803,United States of America

E-mail: goerz@stanford.edu

Keywords: quantumoptics, quantumnetworks, optimal control, numericalmethods

Abstract
ThewavefunctionMonte-Carlomethod, also referred to as the use of ‘quantum jump trajectories’,
allows efficient simulation of open systems by independently tracking the evolution ofmany pure-
state ‘trajectories’. Thismethod is ideally suited to simulation bymodern, highly parallel computers.
Herewe show that Krotov’smethod of numerical optimal control, unlike others, can bemodified in a
simpleway so that it becomes fully parallel in the pure states without losing its effectiveness. This
provides a highly efficientmethod forfinding optimal control protocols for open quantum systems
and networks.We apply thismethod to the problemof generating entangled states in a network
consisting of systems coupled in a unidirectional chain.We show that due to the existence of a dark
state subspace in the network, nearly optimal control protocols can be found for this problemby using
only a single pure-state trajectory in the optimization, further increasing the efficiency.

1. Introduction

The control of simple quantum systems is central to the future realization of quantum technologies [1–4]. Such
systems are usually open,meaning that they experience a significant source of noise from their environments
[5, 6]. Systems that form the nodes in a quantumnetwork, inwhich the nodes are connected together via
traveling-wave fields are also necessarily open due to the interactionwith the fields [6–9]. At the simplest level,
open quantum systems andnetworks can be described by afirst-order differential equation for the density
matrix called amaster equation. A useful feature ofmaster equations is that the evolving densitymatrix for the
system or systems can alternatively be written as the average over an ensemble of pure states in which the
evolution of each state is given by an equationwith a random (stochastic) component [6, 10–13]. For a
d-dimensional system the representation of the densitymatrix scales as d2 while that of a pure-state scales
only as d. For this reason the pure-state ensemble approach, or ‘quantum trajectory’ approach, can provide a
significant reduction in numerical overhead. Here we use the trajectorymethod in which the stochastic
element is a series of ‘jumps’ at random times, often referred to as the ‘quantumMonte-Carlo’ or ‘quantum
jump trajectories’method [14–16].

The ability to vary one ormore parameters of theHamiltonian of a systemover time is a powerful tool for
controlling the system. The problemof determining the time-dependence, or ‘pulse shapes’ required to realize a
given evolution is highly non-trivial, however, and as a result numerical searchmethods, often referred to as
‘optimal control’methods, are very useful for this purpose [17, 18]. To perform a numerical search requires
simulating the evolution of a systemor networkmany times under differing pulse shapes to sufficiently explore
the ‘control space’ of possible pulses. The use of quantum trajectories for such simulations, especially as the size
of a network increases, is thus desirable.

Here we examine the form that gradient-based numerical searchmethods takewhenwritten in terms of the
ensemble of pure-state evolutions (the ‘quantum trajectories’) that simulate themaster equation.We show that
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unlike othermethods, Krotov’smethod can be formulated in such away that updates to the pulse shapes are
obtained either from independent trajectories, or by quadratic cross-referencing of trajectories.We then show
via a numerical example that Krotov’smethod remains effective even for a small number of trajectories,
including a single trajectory.

In the second part of this workwe apply the above ‘Krotov trajectorymethod’ to a problemof preparing a
class of entangled states in a simple network. This network consists of a ‘chain’ of systems connected via a single
unidirectional field. Each system, or ‘node’ in the network is a cavity containing a systemwith two stable levels,
and forwhich the interactionwith the cavitymode can be turned on and off via a local control field. Oneway in
which these nodes can be realized is by having a three-level atom in each cavity, inwhich the three levels are in a
lambda configuration. The two ground states provide the two stable levels, and the interaction between these
two levels and the cavitymode ismediated by an off-resonant coupling to the excited state. Our problemmay be
thought of as a generalization of the configuration used byCiracet al in their seminal work inwhich they showed
how the state of a two-level system in a cavity could be transferred to a second two-level system in a second cavity
via a unidirectionalfield [19]. They found that, so long as the coupling of each cavity to the traveling-wave field
was the only source of dissipation, the coupling between the two-level systems and their respective cavities could
be controlled in such away that the excitation stored in the first two-level system could be emitted into the field,
enter the second cavity, and be completely re-absorbed by the second two-level system, without being lost from
the second cavity to the traveling field (that is, lost out of the ‘open end’ of thefield that travels away from the
cavities). Strictly speaking, to effect perfect transfer in this way requires an infinite time, since the transfer of the
excitation to the field is an exponential decay, but near-unity fidelity can be obtainedwithin afinitemultiple of
the decay time.Oneway to understand the protocol of Ciracet al is to say that there is a subspace of joint states of
the twonodes that are ‘dark’ in the sense that no photonswill be emitted from the systemswhen in this subspace
[20–23]. The protocol is able to realize the transfer by evolving exclusively within this subspace. Protocols that
employ the transfermethod proposed byCiracet alhave been realized in a number of experiments [24–28].

Here we consider the preparation of dark states ofNnodes inwhich a single-excitation, originally prepared
in the first node, is shared equally between all the nodes.Wefind that by controlling only the local coupling
between the nodes and the field link it is possible to prepare thesemulti-partite entangled states while remaining
within the dark state subspace, thus realizing essentially perfect preparation (up to the infidelity imposed by the
finite duration of the protocol and any sources of loss and decoherence additional to the field link).We alsofind
that because the optimal protocols are able to enter the dark state subspace quickly on the time scale of the
transfer, themajority of the numerical search can be performedwith a single pure-state trajectory, thus greatly
increasing the efficiency.

Our trajectory-based optimizationmethod is applicable to essentially any control task inwhich the effect of
the environment can bewritten as an average over pure-state trajectories. This is true for allMarkovianmaster
equations that have the Lindblad form, and a few non-Markovianmaster equations [29–35]. Ourmethod is
especially useful for situations inwhich there are dark state spaces inwhich the effect of the bath vanishes. This
can be true for quantumnetworks, as in the examplewe explore here. Another scenario inwhich this holds is
that of the storage and retrieval of a photonwave-packet from a collective dark state of an atomic ensemble
[36–39].

The rest of this paper is structured as follows. In section 2wefirst review theMonte-Carlo wavefunction
method and the two preeminent gradient-basedmethods of quantumoptimal control, gradient-ascent-pulse-
engineering (GRAPE) andKrotov’smethod. Then, in section 2.3, we develop the central result of this paper, a
trajectory-based variant of Krotov’smethod.We illustrate themethod in a numerical case study in section 3.We
first introduce the networkmodel for a chain of cavities containing trapped atoms. Then, in sections 3.2–3.4, we
present the result of applying optimal control to the creation of a dark state in that system, and analyze the
convergence and the noise properties of the optimized pulses. Section 4 concludes.

2.Optimal control via quantum trajectories

2.1. TheMonte-Carlowavefunctionmethod
Weconsider the problemof initializing a quantumnetwork from awell-defined separable state Y = ñ∣ ( )t 0 to a

(generally entangled) state Y = ñ∣ ( )t Ttgt . The network is characterized by aHamiltonianH H H= + åˆ ˆ ( ) ˆu ti i i0

with one ormore control fields ui(t), and a set of Lindblad operators L{ˆ }l to describe dissipative processes. In the
Markov limit [5], the dynamicalmap r r=ˆ ( ) ( ) ˆ ( )t t , 0 0 denotes the solution of themaster equation

H
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with the boundary condition r = Y ñáYˆ ∣ ( ) ( )∣0 00 and the dissipator D.
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For a network consisting ofmore than a trivially small number ofnodes, in general, the exponential growth of
theHilbert spacewill quickly render the numerical treatment of the systemdynamics in Liouville spaceunfeasible.
Significantly less resources are required to simulate the dynamics throughquantum trajectories. In this case, r̂ ( )t is
approximated as an average of the pure states Y ñáY∣ ( ) ( )∣t tk k resulting from  ¥M trajectories indexedby k,

år = Y ñáY
¥

ˆ ( ) ∣ ( ) ( )∣ ( )t
M

t tlim
1

. 2
M k

k k

Each trajectory Y ñ∣ ( )tk is a possible, statistically independent, pure-state realization of the systemdynamics,
taking into account dissipative processes. There are several ways to obtain the trajectories, corresponding to
different physicalmeasurements on the environment (e.g. thefield intowhich the systemdecays), and governed
by different stochastic equations ofmotion.Measurements of one or both of the quadratures of the field result in
a quantumdiffusion equation (QSDE) [13, 40], while photon counting results in quantum jumps (MCWF)
[15, 16]. For the purposes of evaluating the densitymatrix via(2), the various kinds of trajectories are equivalent.
Wewill focus on the quantum jumpmethod because it is themost straightforward to realize numerically.

TheMCWFalgorithm for propagating the trajectory state Y ñ∣ k is [41]

1. define the non-Hermitian effectiveHamiltonian

H H L Lå= +ˆ ˆ ˆ ˆ ( )†
3

l
l leff

2. draw a randomnumber rä [0, 1)

3. propagate until Y =∣ ( )∣t rk
2

4. apply an instantaneous quantum jump

L

L
Y ñ 

Y ñ

Y ñ
∣ ( )

ˆ ∣ ( )
∣∣ ˆ ∣ ( ) ∣∣

t
t

t
,k

l k

l k

choosing L̂l from the set of all Lindblad operators with probability

L L L= áY Y ñ( ˆ ) ( )∣ ˆ ˆ ∣ ( ) ( )†
t tp 4l k l l k

5. draw a new randomnumber rä [0, 1) and continue the propagation

6. normalize any resulting Y ñ∣ ( )tk .

In performing the propagationwith discrete time steps, as is essential numerically, it is crucial to determine the
jump times in step 3with high precision (through interpolation and bisection), and in this waymultiple
instantaneous jumps can be includedwithin one time step. Using this approach, relatively long time steps are
possible. An alternative ‘first-order’ scheme [16] inwhich atmost one jumpmay happen in each time step is
simpler to implement, but requires small time steps to be accurate.

2.2.Optimal Control withGRAPE andKrotov’smethod
We seek optimal solutions ui(t) tominimize the error functional

P^ ^r= - áá ññ( )∣ ( )J T1 , 5T tgt

for afixed durationT, where P̂tgt is the projector onto the target state Y ñ∣ tgt .We use the notation
áá ññ º∣ [ ]†a b tr a b for theHilbert–Schmidt overlap of two operators.

There are well-established gradient-basedmethods of numerical optimal control to solve this problem. The
two preeminent ones areGRAPE [42], usually as a quasi-Newtonmethod in combinationwith the L-BFGS-B
algorithm [43, 44], andKrotov’smethod [45–47]. Both of these are iterative: they start from ‘guess’fields ui

(0)(t)
and calculate updatesD = -( ) ( ) ( )( ) ( )u t u t u ti i i

1 0 that decrease the value of the target functional; for the next

iteration, ( )( )u ti
1 becomes the guess, and the procedure repeats until convergence is reached.

TheGRAPEmethod starts with the assumption that ui(t)with tä [0,T] is discretized into nt time steps, such
that the time evolution up to a point tj is

 r r r= =
¢=

¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( )t t , 0 0 0 , 6j j

j j
j

1

where  º -( )t t,j j j 1 denotes the dynamicalmap r r-ˆ ( ) ˆ ( )t tj j1 , with t0=0 and =t Tnt
. The indices in the

product run backwards to account for time ordering. The control fields are approximated as constant within the
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time interval, º -([ ])u u t t,ij i j j1 . Each time-local value ( )uij
0 ismodified according to the gradient

P̂ ^


rD µ
¶
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= -
¶
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-( ) ( ) ( )( ) ( )u
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u
t

u
t , 7ij

T

ij
j

j

ij
j

0 0
1

where

P P=
¢= +

¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( ) ˆ ( )( ) ( ) †t 8j

j j

n

j
0

1

0
tgt

t

is the target state backward-propagatedwith the conjugate Lindbladian. The superscript zero indicates the
dynamics under the guess controls.

Krotov’smethod takes a slightly different approach. Starting from time-continuous guess controls ( )( )u ti
0 , it

analytically constructs pulse updatesΔ ui(t) thatminimize an extended functional, commonly

òå l
= + -

=D
  ( )

[ ( ) ( ) ] ( )( ) ( )

( )

J J
S t

u t u t td , 9T
i

i

i

T

i i

u t
0

1 0 2

i

whereλi is an arbitrary weight determining the overallmagnitude ofD ( )u ti , and Si(t)ä [0, 1] is a shape function
thatmay be used to enforce boundary conditions. As the optimization converges,D ( )u t 0i , such that J and JT
become equivalent. The control problem is solved by the update equation

P̂ ^


l
rD =

¶
¶

( ) ( ) ( )
( )

( ) ( )( ) ( )u t
S t

t
u t

tIm , 10i
i

i i

0 1

where P̂ ( )( )
t

0
is a state backward-propagated with the conjugate Lindbladian, see(8), with the boundary

condition

P P^ ^
r

= -
¶

¶áá
=( )

( )∣
( )T

J

T
, 11T

tgt

wherewe use a notation analogous to [47] for the derivative with respect to the formal co-state in inner products
in Liouville space. Only now is the updateΔui(t)discretized to a time grid (D  D( )u t ui ij, t tj), resulting in
a formula that superficially resembles(7), with at least two crucial differences:

First, the forward-propagated state ρ(t) uses the updated controls ( )( )u ti
1 in(10), and the guess controls

( )( )u ti
0 in(7). Thismakes Krotov’smethod sequential (updates at later times depend on updates at earlier times),

whereasGRAPE is concurrent (updates are independent).
Second, the local derivative term in each equation differs; the gradient derivative ¶ ¶uj ij can be evaluated

similarly to j itself, under the assumption that j is a simple exponential [48]. In comparison, ¶ ¶uij ismore
straightforward to evaluate (and instantaneous). In full generality,  in (10) is the right-hand side of the
equation ofmotion for r̂, whether or not this is amaster equation in Lindblad form [47]. For the particular form
(1)with a time-independent dissipator, H r¶ ¶ = [ ˆ ( )]u t,ij i j .

The backward-propagated state P̂ ( )( )
t

0
is the same for Krotov’smethod andGRAPE only for the specific

case of a direct state-to-state transfer, functional(5).More generally, in Krotov’smethod, the boundary
condition is determined explicitly by(11), which for other optimization tasks (e.g., gate optimization) does
not yield states identical to the target states (but usually, a linear combination of them). Even though for
GRAPE, the boundary condition also implicitly depends on the choice of functional, for all optimization tasks
in quantum control that we are aware of, the backwards propagation always starts from the target states.While
we have assumed linear controls and a convex functional, Krotov’smethod can be also be extended to go
beyond these assumptions [47].

2.3. Krotov’smethod for quantum trajectories
There are two possibilities for rewriting the optimization in terms of quantum trajectories. First, we can insert
the expansion of r̂ (2) into the functional (5) tofind

å= - áY Y ñ
t

¥ = º
  ∣ ( )∣ ∣ ( )J

M
T1 lim

1
. 12T

M k

M

k
1

tgt
2

k

That is, the fidelity is simply the average of the fidelities from each trajectory.We seek a single control that
simultaneously implements the state-to-state transition for every Y ñ∣ k .

We nowwish to ask, given the formof JT, how the update rules forGRAPE andKrotov’smethodmight be
written in terms of the individual trajectories. ForGRAPE this is not so simple; the formof the update rule is

4

QuantumSci. Technol. 3 (2018) 045005 MHGoerz andK Jacobs



based on the fact that the evolution of r̂ in each time step is given by the application of a linear operator j , and
this is no-longer true for the trajectories. Second, in a given time step the evolution of a given trajectorymay
contain one ormore jumps at random times, which further complicates the calculation of the derivative with
respect to the controls uij.

In contrast, for Krotov’smethod the functional(12) leads to the update equation [46]

Hål
cD = á Y ñ

=
ºD

  ( ) ( ) ( )∣ ˆ ∣ ( ) ( )( ) ( )

( )

u t
S t

M
t tIm , 13i

i

i k

M

k i k

u t
1

0 1

ik

where c ( )( ) tk
0 is backward-propagatedwith the boundary condition

c t= -
¶
¶áY

= Y ñ( )
∣

∣ ( )( ) ( )T
J

, 14k
T

k
k

0 0
tgt

where t( )
k
0 is τk from (12) evaluated for the guess pulse. The crucial difference is that forGRAPE, the gradient is

evaluated for the time evolution operator, whereas for Krotov’smethod, the gradient is with respect to the
equation ofmotion.Only the latter is immediately compatible with the decomposition into quantum
trajectories.

From anumerical perspective, the update equation (13) can be evaluatedwith high efficiency: the
contributions to the updateD ( )u tik from every trajectory are completely independent. If the numericalmethod
is parallelized, so that different trajectories are simulated on different processors, and amessage-passing-
interface (MPI) is used for interprocessor communication, only these scalar values need to be communicated.
We thus reap the full benefit of theMCWFmethod: reduction of the overall dimensionality by a factor of d, the
dimension of the totalHilbert space. The requiredmemory per compute node is reduced directly by that factor;
theworst-caseCPU time reduces by d3 (as the fundamental operation in the time propagation is amatrix-vector
multiplication).

We can obtain an alternative formulation of the control problem in terms of quantum trajectories by leaving
the functional(5) in terms of the densitymatrix, and instead expanding the update equation in terms of the
trajectories. ForGRAPE this approach has the same issues as before, whereas for Krotov’smethod this results in
the update equation

Hål
x xD = á Y ñáY ñ

¢=
¢ ¢( ) ( ) [ ( )∣ ˆ ∣ ( ) ( )∣ ( ) ] ( )( ) ( ) ( ) ( )u t

S t

M
t t t tIm , 15i

i

i k k

M

k i k k k2
, 1

0 1 1 0

using the decomposition

P å x x= ñá
¥ =

ˆ ( ) ∣ ( ) ( )∣ ( )( )
t

M
t tlim

1
16

M k

M

k k
0

1

for the backward-propagationwith x ñ = Y ñ∣ ( ) ∣( ) Tk
0

tgt . The above update now incorporates cross-trajectory
information, including overlaps of the propagated states from each trajectorywith those from every other
trajectory. Compared to the full densitymatrix optimization, this alternativemethodmaintains the saving in
CPU time andmemory that comes from evolving the trajectories independently, but does incur significantly
more communication overhead.

Both trajectory formulations of Krotov’smethod, the ‘independent trajectory’ and ‘cross-trajectory’
formulations, guaranteemonotonic convergence for  ¥M . However, the numerical efficiency rests on the
assumption thatM can be kept reasonably small, ideally smaller than d (and certainly smaller than d3). For a
significantly larger number of trajectories, the total numerical resources will approach or even surpass those
required for a full densitymatrix propagation.Note that even if there is no benefit in the total numerical
resources, thememory per compute node is still reduced by a factor of d.

For finite (small)M, there is no guarantee ofmonotonic convergence. This is especially true because the
stochastic jumps are different between iterations, as well as between the forward and the backward-propagation
within the same iteration.Moreover, we expect the instantaneous jumps in the trajectory to cause jumps also in
the control update. These jumpswill average out bothwith the number of trajectories and the number of control
iterations, but theymay slow down convergence andmay introduce noise into the optimized control field. To
analyze how strongly the resulting optimized control fields are affected by these two factors, and towhat extent
the cross-trajectory update equationmight bemore robust, we now consider a practical example.
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3. Creation of an entangled dark state in a quantumnetwork

3.1.Networkmodel
Weconsider a network inwhich a number of ‘nodes’ are connected via a traveling-wave field, depicted in
figure 1. The nodes are connected to thefield via circulators so that thefield propagates fromone node to the
next in a single direction only, a configuration often referred to as a ‘cascade’network. Each node consists of a
cavity containing a single atom. The atom encodes a qubit in two degenerate states ñ∣g , ñ∣e , driven via a Raman
transition through an auxiliary level ñ∣r : ñ « ñ∣ ∣g r couples through a time-dependent drive W( )t with detuning
Δ, while ñ « ñ∣ ∣r e is statically coupledwith coupling strength g, see figure 1. For largeΔ, the level ñ∣r can be
adiabatically eliminated [19], resulting in an effective two-level systemwhose coupling to the cavity is controlled
via the driveΩ(t).

For a single node labeled (i), the effectiveHamiltonian in the rotatingwave approximation then consists of
the drift term Ĥ0 and a driven Jaynes–Cummings term Ĥd .With the cavity detuned from the driving field by
g2/Δ to compensate for the Stark shift, we find

H H H= +ˆ ˆ ˆ ( )( ) ( ) ( )
, 17

i i
d
i

0

H a a a a= -
D

+
D

P Äˆ ˆ ˆ ˆ ˆ ˆ ( )( ) † ( ) †g g
, 18

i
i i g

i
i i0

2 2

H as= -
W

D
Ä -ˆ ( ) ( ˆ ˆ ) ( )( ) ( )t gi

2
c.c. , 19d

i i
e g

i
i,

where âi is the cavity lowering operator, P̂g is the projector on the qubit ground state, and ŝe g, is the raising
operator of the qubit. Leakage of photons out of the cavity is described by the Lindblad operator

L ak=ˆ ˆ ( )( )
2 . 20

i
i

There is also spontaneous decay from level ñ∣r of the atom, but the decay is suppressed for largeΔ (the
prerequisite for the adiabatic elimination that yields the effective two-level system), and can be neglected [19].

We now coupleN cavities to a traveling-wave field via circulators, so that the field propagates from cavity to
cavity in only one direction, as depicted infigure 1. The resultingmaster equation describing the evolution of all
the cavities is obtained using input–output theory [8, 9, 49]. The explicit application of the theory is through the
‘SLH’ formalismofGough and James [7, 50, 51].While the calculation can be done by hand, it is tedious, andwe
instead use theQNET software package, which automates the SLH formalism5.

The totalHamiltonian for the entire network is

H H Hå å= +
= >

ˆ ˆ ˆ ( )( ) ( )
, 21

i

N
i

i j i

N
i j

1 ,

,

H a ak= +ˆ ˆ ˆ ( )( ) †i c.c. 22
i j

i j
,

Note that the connection via the field yields the additional static interactionHamiltonian Ĥ
( )i j,

between all nodes
of the network (notmerely between nearest neighbors). The Lindblad operator for the entire network is

Figure 1.The structure of our network. A number of cavities, each containing a three-level atom in the Lambda configuration, are
connected together by a traveling optical field that enters each cavity in turn via one of its endmirrors. Each cavity is coupled to the
field via a circulator (not shown), so that the cavities only couple to fieldmodes that are traveling from left to right. Thefield that is
output from the first cavity thus enters the second, but not vice versa, inwhat is referred to as a ‘cascade’ connection.

5
The python packageQNET allows the user to construct quantum input–output networks, andwill calculate themaster equation for any

such network [52].
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L Lå=
=

ˆ ˆ ( )( )
. 23

i

N
i

1

Thus, both the interaction between nodes and the total dissipation of the network are proportional to the decay
rateκ. In order to create an entangled state quickly,κ (the interaction)must be large, whichwould seem to imply
rapid decay of the network.However, the formof the Lindblad operator allows for the individual summands L̂i

to destructively interfere, canceling overall dissipation. If the dark state condition [20–23]

L L" áY Y ñ =( )∣ ˆ ˆ∣ ( ) ( )†
t t t: 0 24

is fulfilled, an entangled statemay be generatedwithout loss of coherence. Nonetheless, wemust consider the
dynamics of a quantumnetwork to be inherently highly dissipative, as the dark state condition is only fulfilled
for carefully chosen control pulses that evolve the network exclusively within the dark statemanifold.

In applying our numerical searchmethod to the problemof generating an entangled dark state in the
networkwe assume that the field link between cavities is the only significant source of loss. Since the entangled
dark state exists only because the samefield link is coupled tomultiple systems, any sources of loss that are not
similarly collective will necessarily limit the fidelity withwhich the entangled state can be prepared. Such losses
include spontaneous emission from the atomic excited state (which is suppressed by the detuning), internal
cavity losses, and loss en route between the cavities (as opposed to loss out of the open end of the field link, which
is the collective loss). These losses will be negligible so long as the loss rates are small compared to the time it
takes the protocol to prepare the entangled state. (This time scale is set by the rate at which the cavities decay out
the open end of thefield link, which is the also the rate of the effective field-mediated coupling between the
cavities.)We ignore all additional sources of loss in our analysis because (i) the effect of these loss sources cannot
be reduced in any significant way by optimizing the control protocol (since they do not possess any associated
dark states), and thuswhile this loss limits the achievable fidelity it is not expected to change the convergence
properties of the numerical searchmethod, and (ii) to prepare high-fidelity entangled states requires that any
additional loss is small compared to that of the field link itself.

3.2.Optimized creation of an entangled dark state
Weassume that at time zero, the network is initialized in the state Y = ñ = ñ∣ ( ) ∣t eg g0 ... . That is, the atom in the
cavity of the leftmost node is in the excited state, while all other nodes (and all cavities) are in the ground state.
The state of the cavities, ñ∣0 ... 0 is implicit in our notation.Wenow seek the control fields W ( )ti (one field for
each node) that will bring the system into an entangled dark state at afixedfinal timeT,
Y = ñ = ñ + ñ + + ñ∣ ( ) (∣ ∣ ∣ )t T eg g ge g gg e... ... ...

N

1 . The cavity for all nodes againmust be in the ground

state at timeT.
The optimization problem is solved byminimizing(5) using Krotov’smethod.We first do this optimization

using the full densitymatrix, update(10), and then—for comparison—using a trajectory optimization, both for
independent trajectories, functional(12)with update(13), and for the cross-trajectorymethod, update(15).

One reason for choosing this particular physical system as an example to illustrate our proposed
optimizationmethod is that theHamiltonian(21)preserves the total excitation in the system. Thus, it is
sufficient tomodel both the cavity and the atomat each node as a two-level-system.Moreover, when
representing the state numerically, we need only include the single-excitation subspace alongwith the ground
state-to account for the possibility of spontaneous decay (the loss of the excitation out the open end of thefield
that links the cavities). The effective dimension of the resultingHilbert space is 2N+1, instead of the
exponentially scaled 4N. Thismakes a full densitymatrix optimization feasible even for relatively largeN,
allowing us to compare against the trajectory optimizations.We consider first the simplest case ofN=2 nodes,
with control fieldsΩ1(t) andΩ2(t). In this case, the dark state is the Bell state

Yñ = ñ + ñ∣ (∣ ∣ ) ( )eg ge
1

2
. 25tgt

This allows us to easily illustrate the characteristics of the optimized pulses and node dynamics. To ensure that
our conclusions hold for larger networks, we then consider a network of 20 nodes. In principle, even larger
networkswould be numerically feasible. However (aswewill see), the optimization becomes increasingly harder,
due to the drastically larger search space resulting fromN independent control pulses.When the number of
nodes is significantly higher that 20, we do notfind good control solutionswithin a reasonable number of
iterations (even for the optimization that employs the full densitymatrix).We expect that itmight be possible to
sufficiently reduce the search space for larger networks by not treating all pulses as fully independent.

For full generality, we use a dimensionlessHamiltonianwhere energies arewritten in units of g.
Consequently, time can be expressed in units of ÿ/g. ForΔ=100g andκ=g, through systematical variation
ofT, we find that the two-node dark state can comfortably be realized for =T g5 . For 20 nodes, we
correspondingly increase the process duration to =T g50 . In general, for afixed number of nodes, the
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minimum time required to entangle the nodes of the network is proportional to the interaction
Hamiltonian(22), that is, proportional to the value ofκ.

Figure 2 shows the result of an optimization for two nodes starting from a simple Blackman-shaped guess
pulse, see the dotted gray line in panel(a). For a direct densitymatrix optimization usingKrotov’smethod, that
is theminimization of(5)with update(10), after 5000 iterations an error of JT=1.3×10−3 is achieved. The
optimized pulsesΩ1(t) andΩ2(t) for thefirst and second node are shown infigure 2(a).We show the pulses
resulting from the full densitymatrix optimization (superscript ‘ρ’; black, red), from two independent
trajectories (superscript ‘ind’; dark blue, dark orange), and from two cross-referenced trajectories (superscript
‘cr’; light blue, light orange). The corresponding dynamics for the pulses resulting from the densitymatrix
optimization are in panel(b), showing the smooth transition from the initial state ñ∣eg to the superposition of

ñ∣eg and ñ∣ge : the excitation of thefirst and second qubit, the plotted expectation values áP ñ( )
e
1 and áP ñ( )

e
2 ,

correspond directly to the population of ñ∣eg and ñ∣ge , as theHamiltonian preserves excitations (á ñ∣ee ee ≡0).
As the interaction between the nodes ismediated by photons being emitted from cavity 1 into cavity 2, both

cavities are necessarily excited during the transition (see the light and dark red dashed lines infigure 2(b)).
Nonetheless, the dynamics are (nearly) coherent, due to the systembeing in a dark state (see the green line for
L Lá ñˆ ˆ†

in the bottomoffigure 2(b), which is close to zero). The two cavities are phase-shifted byπ, that is
a aá ñ » -á ñˆ ˆ1 2 , resulting in destructive interference for the total dissipator.

Aswe have not taken into account any other dissipation channels (such as spontaneous decay of the qubit),
the deviation from the dark state condition(24), is the only factor that limits the fidelity of the transfer. By
continuing the optimization beyond 5000 iterations, the error could bemade arbitrarily small in principle.

Optimizingwith independent trajectories, yields very similar results, corresponding to the optimized pulses
shown infigure 2(a) (dark orange, dark blue) being close but not identical to the pulses obtained fromdirect
densitymatrix optimization (red, black). For the cross-trajectorymethod, the dynamics and optimized pulses
(light colored) are virtually indistinguishable from the densitymatrix optimization.

In general, running both optimizationmethodswith differing numbers of trajectories, and the density
matrixmethod, all yield comparable errors. Nevertheless there are differences in the rate of convergence, as well
as in certain details of the pulse features. As shown in the zoomed inset offigure 2(a), there is some noise in the
optimized pulses obtained from trajectory optimization, compared to the perfectly smooth result of the density
matrix optimization. This noise originates from the discontinuous jumps in the trajectories. The optimized
pulses and dynamics for the 20-node network (not shown)have the same qualitative characteristics. In the

Figure 2.Optimized pulses and dynamics. (a)Optimized pulses for the creation of the dark state in a two-node network. Wr
1,2 are the

pulses for node 1, 2 resulting fromoptimizing using the densitymatrix. W1,2
ind and W1,2

cr are the pulses fromoptimizing using two

independent trajectories, respectively two cross-referenced trajectories. All pulse amplitudes are normalized as W º W Dr r˜ 21,2
,tr

1,2
,tr .

The guess pulse (identical for all nodes and optimizations) is indicated by the dotted gray curve. (b)Population dynamics under the

optimized pulses Wr( )ti , as the expectation values of the qubit excitation, áP ñˆ ( )
e
i
, and the cavity excitation, a aá ñˆ ˆ†

i i , with i=1, 2. In the
bottom, the value of the dark state condition(24).
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following, wewill analyze howboth the convergence rate and the noise in the optimized pulses depend on the
choice of optimizationmethod and the number of trajectories.

3.3. Convergence of trajectory optimization
Figure 3 shows the convergence, asmeasured by the error(5), over the number of iterations in the control
procedure. In each iteration, the pulse is updated according to the appropriate update equation. Panel (a) shows
the results for the two-node network, while panel (b) shows the result for the 20-node network.

The convergence for the full densitymatrix optimization, update(10), is shown as the black dashed line. It
compares to the convergence for using 1–128 independent trajectories (‘indep. trajs’), update(13), and 2–128
cross-trajectories (‘cross-trajs’), update(15).

Wefirst observe that the optimization for the 20-node network ismuch harder than the optimization for 2
nodes, requiring several thousand iterations to reach errors below 10−2. In particular, the densitymatrix
optimization has a long initial plateau before starting to converge. This behavior is exacerbated formore nodes,
which is whywe have limited ourself to considering atmost a 20-node network. Remarkably, the use of a
trajectory optimization performs significantly better in this initial phase, largely avoiding the plateau.We
presume this is because the dissipative jumps affect the trajectoriesmuchmore strongly than the smooth decay
affects the densitymatrix, leading to a steeper gradient. Both the two-node network and the 20-node network
have the same qualitative convergence characteristics; the larger number of nodes simply ‘stretches’ themout.

The convergence of the cross-trajectory optimization consistently outperforms the optimization using
independent trajectories. Asymptotically, the independent trajectories eventually lag behind the full density
matrix optimization, but only slightly so. The cross-trajectory optimization asymptotically reaches the same
error as the full densitymatrix optimization (clearly for the two-node network, butwemay extrapolate this
claim to hold also for 20 nodes).

A second remarkable observation is that the number of trajectories has almost no effect on the convergence.
Thus, even a single trajectory, or two cross-referenced trajectories, can yield a satisfactory result, a significant
reduction of numerical effort compared to the use of full densitymatrices. It is worth pointing out that as long as
the number of trajectories does not exceed the number of CPU cores available on a compute node, it would be
easy to parallelize themethod not using amessage-passing interface, but instead using a shared-memory
approach (e.g. OpenMP). In this case, the additional numerical overhead of the cross-trajectory optimization
relative to independent trajectories largely disappears.

For the trajectory optimizations, the error(10) that is shown infigure 3 is not identical to the functional JT
that the optimization directly aims tominimize(12). Because of thefinite number of trajectories and the
randomness inherent in the quantum jumps, JT itself does not convergemonotonically. An example for two
independent trajectories is shown in the inset offigure 3. The loss of a photon from the cavity out of the open end
of the field link (that is, a quantum jump) in a given iteration results in a total loss (error 1.0), as visible in the
spikes in JT. In addition, the lower envelope (JT in the absence of photon loss) shows a localminimumaround
250 iterations, owing to the two competing requirements of the optimization: achieving the desired target state
(in the absence of photon loss), andminimizing decay (the dark state condition). For cross-trajectory

Figure 3.Comparison of convergence of optimization variants, for the two-node network, panel (a), and the 20-node network, panel
(b). For using between 1 and 128 independent trajectories, the error Pr- áá ññˆ ( )∣ ˆT1 tgt after each iteration is shown. This compares to
the optimization using between 2 and 128 cross-trajectories, and the optimization directly in Liouville space (dashed black curve). As
the number of trajectories has almost no effect on the convergence and the curves are not distinguishable, all the curves for 4–128
trajectories are plottedwith the same red dashed line style. All errors are evaluated from the exact densitymatrix evolution under the
optimized pulses, which differs from the functional JT actually guiding the optimization. For the example of an optimization using two
independent trajectories in the two-node network, the value of JT is shown in the inset of panel (a).
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optimization, JT behaves similarly (not shown). The non-monotonic convergence of JT should not be held
against the trajectory optimizationmethod: as shown infigure 3 the actual physical error does decrease
monotonically.

3.4. Jumpnoise
The use of trajectory optimization results in some noise in the control fields, see the inset infigure 2(a). To
analyze how themagnitude of this noise scales with the number of trajectories, we quantify the noise by
comparing the optimized control fieldΩi(t) to a smoothed pulse W ( )ti

smooth

òn = W - W∣ ( ) ( )∣ ( )t t td . 26i

T

i i
0

smooth

For the purpose of this analysis, a good noisefilter should generate an W ( )ti
smooth that deviates fromΩi(t) as little

as possible, while achieving awell-defined degree of smoothness. A standard Savitzky–Golayfilter [53] is well-
suited to solve this problem [54].

Wefind that the noise as defined in(26) asymptotically scales with the number of trajectoriesM as
n µ M1i . This is illustrated infigure 4, which compares the noisemeasure for both pulses of the two-node
network, and for independent- and cross-trajectory optimization, as a function of the number of trajectoriesM.
The results shownhere use a five-point cubic convolute in the Savitzky–Golayfilter; this choice of window
length and polynomial order only affects the proportionality factor, i.e. the y-intercept infigure 4.

For independent trajectories, the M1 scaling holds for all values ofM. The pulseΩ1 is noisier than the
pulseΩ2, which is due to the fact thatΩ2 is closer to the original guess pulse thanΩ1, seefigure 2(a)—any noise
induced by a jump is proportional to themagnitude of the pulse update in a given iteration.

The noise for the cross-trajectory optimization is systematically slightly higher than that for independent
trajectories.Wemay conjecture that this is because the update(15) is quadratic in the (discontinuous) states,
while the update(13) is only linear. However, for a small number of cross-trajectories (< » 5), the noise is
smaller than the asymptotic M1 scaling, closer to the independent trajectories.

In any case, for this specific example, the noise has little effect on the fidelity, as we can see fromfigure 3: the
optimization result is robust with respect to the level of noise introduced by the numerical procedure. If this
were not that case, and if smooth pulses are required, onemay also incorporate the smoothing directly into the
optimization scheme by applying a smoothingfilter, orfitting to a parametrized curve, after each iteration (or
after somefixed number of iterations). The pulses resulting from the optimization in the 20-node network (not
shown) have noise characteristics compatible with the above discussion.

4. Conclusion

Wehave formulated two variants of Krotov’smethod of optimal control based onMonte-Carlo quantum jump
trajectories for implementing state-to-state transitions. The fact that it is possible to apply Krotov’smethod
directly to stochastic trajectories is due to the fact that, unlike othermethods, Krotov’smethod does not require
the calculation of the derivative of the propagator (which for stochastic trajectories does not exist). Thefirst
variant considersM independent trajectories, and optimizes the target in each trajectory, averaging pulse
updates from the trajectories. It is easily parallelized toM processes communicatingwith aMPI. The second

Figure 4. Scaling of noise artifacts in optimized pulseswith the number of trajectoriesM. For both independent trajectories and cross-
trajectory optimization, the noisemeasure according to(26) is shown for the pulse in each node. The dashed lines represent afit to
n µ M1i .
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‘cross-trajectory’ variant obtains an update by cross-referencingM trajectories into a coarse approximation of
the densitymatrix evolution.When parallelized usingMPI, this produces considerable overhead.However, for
smallM, a shared-memory parallelizationmodel is efficient.

In any case, the use of trajectories provides a considerable numerical advantage for systems that are strongly
dissipative, but for which simulating the full densitymatrix is not feasible due to the large dimension of the
Hilbert space. Inmany cases, thememory to store a densitymatrix of size d2 is not available, while a pure-state of
dimension d can easily be stored and propagated. This is typically the case for quantumnetworks, andwe have
illustrated themethod for a simple example of creating an entangled dark state for a network of 20 cascaded
cavities inwhich each contains a trapped atom.

Wefind that the use of trajectories in the optimization yields results comparable to the full densitymatrix
optimization. In the case of cross-trajectory optimization, the convergence of the optimization even
outperforms the densitymatrix optimization.

Remarkably, the number of trajectories has almost no influence in the convergence or the error that is
achieved. The number of trajectories does have an influence in the amount of noise artifacts in the optimized
pulses that result from the discontinuous (jump) dynamics. These scale as M1 in the number of trajectories.
At the same time, they have an only negligible effect on the dynamics and the resulting error, and could also be
removed by applying a smoothing filter to the optimized pulses.

Thus, we can conclude that a relatively small number of trajectories (even just a single trajectory) is sufficient
to optimize a state-to-state transition in a typical dissipative system. Further, this trajectory approach is
especially efficient when the optimal protocol evolves the systemwithin a dark (dissipationless) subspace, a
situationwhich arises, for example, both in quantumnetworks and atomic ensembles [36]. Themethod
naturally extends to optimization problems beyond a simple state preparation, e.g. the realization of quantum
gates [55], or any other optimization that is easily expressed in terms of the densitymatrix.We have presented
our optimizationmethod and the example of the creation of a dark state in the context of themaster equation in
Lindblad form.However, themethod extends to non-Markovian dynamics aswell. It has been shown that
Krotov’smethod can be applied beyond theMarkov approximation and leads to an update equation that is
structurally identical to (10) [56–58], which can then be rewritten in terms of quantum trajectories. Also, instead
of a quantum jumppropagation, another trajectorymethod such as quantum state diffusion [40] could be used.
In all cases, the feasibility of the optimization usingKrotov’smethod results from the fact that no analytic
derivative of the inherently non-analytical propagator is required.
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