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Abstract
Superconducting circuits provide an extremely versatile platform for quantum information processing.
Decoherence times have been pushed to tens or hundreds of microseconds, paving the way for large-
scale fault tolerant quantum computing. The system parameters may be engineered over a wide range
of values. This, however, also provides a considerable challenge in choosing the parameters that most
easily allow for the implementation of a universal set of quantum gates. Here, we chart the parameter
landscape of the circuit-QED Hamiltonian of two transmon qubits [1] coupled via a shared cavity
bus [2]. Using a multi-stage optimal-control procedure, we attempt to find simple control pulses both
for a perfectly entangling quantum gate, and a local quantum gate (i.e., a single-qubit gate on each of
the qubits), at each point in the parameter space. Gradually decreasing the gate duration allows to
estimate the parameter-dependence of the quantum speed limit. We find that the parameter regime
that allows for the fastest implementation of gates is outside of the usually considered dispersive regime,
prompting the realization of a complete universal set of gates sufficiently fast to beat decoherence.

1 Two Transmon Qubits Coupled via Cavity Bus

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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superconducting qubits inside a transmission line
resonator, Fig. from [3]

Parameters:

• ω1 = 6.0 GHz
• ω2 = 5.0 – 7.5 GHz (vary)
• ωc = 4.5 – 11.0 GHz (vary)
• α1 = −290 MHz
• α2 = −310 MHz
• g = 70 MHz

Ĥ = ωcâ
†â︸ ︷︷ ︸

1©
+
∑
q=1,2

ωqb̂†qb̂q +
αq
2
b̂
†
qb̂
†
qb̂qb̂q︸ ︷︷ ︸

2©
+ g(b̂

†
qâ + b̂qâ

†)︸ ︷︷ ︸
3©

 + ε∗(t)â + ε(t)â†︸ ︷︷ ︸
4©

(1)

with 1© the cavity harmonic oscillator, 2© qubit anharmonic oscillators, 3© qubit-cavity coupling, and
4© cavity coupling to control field

ε(t) = E0B(t) cos(ωLt); B(t) = Blackman shape (2)

Include spontaneous decay: lifetime of cavity τc = 3.2 µs [4]; lifetime of qubit τq = 13.3 µs [5]

Standard approach: effective model in the dispersive limit
∣∣ωc − ωq∣∣ � g. Cavity is only populated

virtually, mediates direct effective coupling between qubits and direct driving of qubit excitation.

Here: avoid treating only dispersive regime by numerically solving more general Eq. (1) instead.

2 Method
Goal: For each point (ω2, ωc): find pulse to maximize entanglement (two-qubit gate) and pulse to
implement local gate ∈ SU(2)⊗ SU(2)), using multi-stage optimization scheme [6].

1. Random Search

For each point (ω2, ωc): random frequencies ωL, scan amplitude E0 ∈ [10 : 900] MHz.

Look for minimal value of functional J
splx
PE for perfect entangler and J

splx
SQ for arbitrary local gate,

J
splx
PE = 1− C(1− εmin

pop) (3a)

J
splx
SQ = 1− (1− C)(1− εmin

pop) (3b)

with concurrence C and population loss error εmin
pop = 1−mini ‖Û |i〉 ‖; |i〉 ∈ [00, 01, 10, 11].

2. Gradient-free optimization of analytical pulse parameters

For best values of step 1, use Nelder-Mead downhill simplex to minimize Eq. (3) for free pulse parameters
E0, ωL.

3. Gradient-based optimization (Krotov’s method) for fine-tuning

Use Krotov’s method [7] to continue optimization of ε(t) for arbitrary perfect entangler [8] and arbitrary
local gate ∈ SU(2)⊗ SU(2), based on Cartan decomposition [9]

Û = k̂1 exp

[
i

2

(
c1σ̂xσ̂x + c2σ̂yσ̂y + c3σ̂zσ̂z

)]
k̂2; k̂1,2 ∈ SU(2)⊗ SU(2)

Experimentally relevant measure of success for implementing Ô with Û is Favg =
∫ 〈

Ψ
∣∣∣ Ô†Û ∣∣∣Ψ〉 dΨ.

“Quality” of a parameter point (ω2, ωc) is given by how well an entangling gate and a local gate may
be implemented.

Q(ω2, ωc) =
1

2

(
Favg(Ô=closest PE) + Favg(Ô=closest local gate)

)
; ε

Q
avg = 1−Q

3 Charting the Parameter Landscape

perfect entangler combined 1q/2q error

T = 200 ns

ε
Q
avg = 1.46× 10−2
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Q, M:
√

iSWAP

Optimization Success (best obtained values)

expected error due to dissipation

ε0avg = 1− 1

4
tr
[
Û
†
0Û0

]
with Û0 = Û(g=0, ε(t)≡0)

achieved error (PE and combined)

εPEavg = 1− Favg(Ô = closest PE)

εQavg = 1−Q
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4 Conclusions & Outlook
• Found parameters allowing implementation perfect entangler and local gate, for gate durations down

to 10 ns, beating decoherence with gate error < 1× 10−3.
•Obtained gates are limited only by dissipation.
• Fastest gates can be achieved in previously under-explored (non-dispersive) parameter regime with
ωc near ω1, ω2.
• Long gate durations allow wide range of two-qubit gates; for short gate durations

√
iSWAP is most

efficient.
•More complicated pulse shapes than Eq. (2) have been tried, but provide no significant improvement.
•Outlook: implement complete set of universal quantum gates by directly optimizing single-qubit

Hadamard and phase gates.
•Analyze characteristics of optimal pulses and dynamics. What gate mechanisms are used?
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