Efficient Optimal Control for Robust Quantum Gates in Liouville Space

Michael Goerz

Universität Kassel, Germany

April 24, 2014

QUAINT Workshop 2014 Sandbjerg Estate, Aarhus University, Denmark

The Problem of Robustness

Problem

Problem of real world quantum engineering: Robustness

- Robustness with respect to decoherence ⇒ Liouville space
- Robustness with respect to experimental fluctuations and uncertainties



The Problem of Robustness

Problem

Problem of real world quantum engineering: Robustness

- Robustness with respect to decoherence ⇒ Liouville space
- Robustness with respect to experimental fluctuations and uncertainties

Analytical solutions? Probably not, in most cases!

The Problem of Robustness

Problem

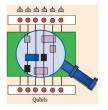
Problem of real world quantum engineering: Robustness

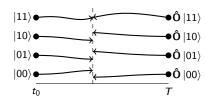
- Robustness with respect to decoherence⇒ Liouville space
- Robustness with respect to experimental fluctuations and uncertainties

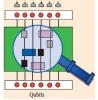
Analytical solutions? Probably not, in most cases!

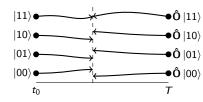
⇒ Optimal Control

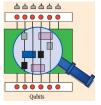
- find controls at the quantum speed limit (avoid decoherence)
- ask for robustness explicitly in the optimization
 - Optimize in Liouville space. . . efficiently?
 - Optimize over ensembles of Hamiltonians











$$|11\rangle \bullet \qquad \qquad \bullet \hat{\mathbf{0}} |11\rangle$$

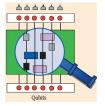
$$|10\rangle \bullet \qquad \qquad \bullet \hat{\mathbf{0}} |10\rangle$$

$$|01\rangle \bullet \qquad \qquad \bullet \hat{\mathbf{0}} |01\rangle$$

$$|00\rangle \bullet \qquad \qquad \bullet \hat{\mathbf{0}} |00\rangle$$

$$t_0 \qquad \qquad T$$

$$A\Rightarrow J_t = 1 - rac{1}{d^2} \sum_{j=1}^{d^2} \mathfrak{Re} \left[\mathsf{tr} \left[\mathbf{\hat{O}} \hat{
ho}_j(0) \mathbf{\hat{O}}^\dagger \, \hat{
ho}_j(T)
ight]
ight]$$



$$|11\rangle \bullet \qquad \qquad \bullet \hat{\mathbf{0}} |11\rangle$$

$$|10\rangle \bullet \qquad \qquad \bullet \hat{\mathbf{0}} |01\rangle$$

$$|01\rangle \bullet \qquad \qquad \bullet \hat{\mathbf{0}} |01\rangle$$

$$|00\rangle \bullet \qquad \qquad \bullet \hat{\mathbf{0}} |00\rangle$$

$$t_0 \qquad \qquad T$$

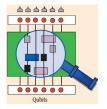
Lift
$$J_T = 1 - \frac{1}{d} \sum_{i=1}^d \mathfrak{Re} \left\langle \Psi_i \, \middle| \, \hat{\mathbf{O}}^\dagger \hat{\mathbf{U}}(T,0,\epsilon) \, \middle| \, \Psi_i \right\rangle$$
 to Liouville space.

Schulte-Herbrüggen et al., JPB 44, 154013 (2011).

Ohtsuki, NJP 12, 045002 (2010)...

$$\Rightarrow J_t = 1 - \frac{1}{d^2} \sum_{j=1}^{d^2} \mathfrak{Re} \left[\operatorname{tr} \left[\hat{\mathbf{O}} \hat{\rho}_j(0) \hat{\mathbf{O}}^{\dagger} \hat{\rho}_j(T) \right] \right]$$

 d^2 matrices to propagate! (16 for two-qubit gate)



$$\begin{vmatrix} |11\rangle & & & & & & \\ |10\rangle & & & & & & \\ |01\rangle & & & & & & \\ |00\rangle & & & & & & \\ |00\rangle & & & & & \\ t_0 & & & & & \\ \hline \end{vmatrix}$$

$$A\Rightarrow J_t = 1 - rac{1}{d^2} \sum_{j=1}^{d^2} \mathfrak{Re} \left[\operatorname{tr} \left[\hat{\mathbf{O}} \hat{
ho}_j(0) \hat{\mathbf{O}}^\dagger \, \hat{
ho}_j(T)
ight]
ight]$$

Claim

We only need to propagate **three** matrices (independent of d), instead of d^2 .

No need to characterize the full dynamical map! — much less information required to assess how well a desired unitary is implemented

No need to characterize the full dynamical map! – much less information required to assess how well a desired unitary is implemented

1) Do we stay in the logical subspace?

No need to characterize the full dynamical map! – much less information required to assess how well a desired unitary is implemented

1) Do we stay in the logical subspace?

$$\hat{
ho}_3 = rac{1}{4} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

No need to characterize the full dynamical map! — much less information required to assess how well a desired unitary is implemented

- (1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

$$\hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

No need to characterize the full dynamical map! – much less information required to assess how well a desired unitary is implemented

- (1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

$$\hat{
ho}_1 = rac{1}{20} egin{pmatrix} 8 & 0 & 0 & 0 \ 0 & 6 & 0 & 0 \ 0 & 0 & 4 & 0 \ 0 & 0 & 0 & 2 \end{pmatrix},$$

$$\hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

No need to characterize the full dynamical map! – much less information required to assess how well a desired unitary is implemented

- (1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

$$\hat{
ho}_1 = rac{1}{20} egin{pmatrix} 8 & 0 & 0 & 0 \ 0 & 6 & 0 & 0 \ 0 & 0 & 4 & 0 \ 0 & 0 & 0 & 2 \end{pmatrix},$$

$$\hat{
ho}_3 = rac{1}{4} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

E.g.
$$\hat{\mathbf{O}} = \operatorname{diag}(-1, 1, 1, 1);$$

For $\hat{\mathbf{U}} = \operatorname{diag}(e^{i\phi_{00}}, e^{i\phi_{01}}, e^{i\phi_{10}}, e^{i\phi_{11}})$
using just $\hat{\rho}_1$ will not distinguish $\hat{\mathbf{U}}$ from $\hat{\mathbf{O}}$. $(\hat{\mathbf{U}}\hat{\rho}_1\hat{\mathbf{U}}^{\dagger} = \hat{\mathbf{O}}\hat{\rho}_1\hat{\mathbf{O}}^{\dagger} = \hat{\rho}_1)$

No need to characterize the full dynamical map! – much less information required to assess how well a desired unitary is implemented

- (1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

E.g.
$$\hat{\mathbf{O}} = \operatorname{diag}(-1,1,1,1);$$

For $\hat{\mathbf{U}} = \operatorname{diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$
using just $\hat{\rho}_1$ will not distinguish $\hat{\mathbf{U}}$ from $\hat{\mathbf{O}}$. $(\hat{\mathbf{U}}\hat{\rho}_1\hat{\mathbf{U}}^\dagger = \hat{\mathbf{O}}\hat{\rho}_1\hat{\mathbf{O}}^\dagger = \hat{\rho}_1)$

Efficient Gate Optimization in Liouville Space

Optimization States

populations

phases

subspace

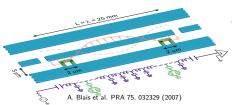
Functional

$$J_T = 1 - \sum_{i=1}^3 rac{w_j}{\mathsf{tr}[\hat{
ho}_i^2(0)]} \mathfrak{Re}\left[\mathsf{tr}\left[\hat{m{O}}\hat{
ho}_j\hat{m{O}}^\dagger\,\mathcal{D}[\hat{
ho}_j]
ight]
ight]$$

- Allow for different weights $(\sum w_i = 1)$
- $J_T = 0$ if and only if $\forall \ \hat{\rho}_j \colon \mathcal{D}[\hat{\rho}_j] \equiv \text{target state}$ $\Rightarrow \text{implemented unitary gate } \hat{\mathbf{O}}.$

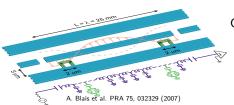
Example 1

Optimizing for Robustness under Dissipation for a Transmon Gate



Cavity mediates

- driven excitation of qubit
- interaction between left and right qubit



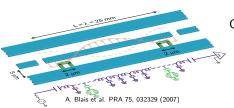
Cavity mediates

- driven excitation of qubit
- interaction between left and right qubit

Effective Hamiltonian

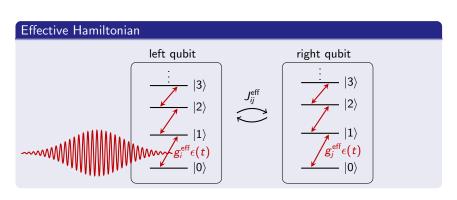
$$\begin{split} \hat{\mathbf{H}}_{\text{eff}} &= \sum_{q=1,2} \sum_{i=0}^{N_q-1} (\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + \sum_{q=1,2} \sum_{i=0}^{N_q-1} g_i^{\text{eff}\,(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+\,(q)} + \hat{\mathbf{C}}_i^{-\,(q)}) \\ &+ \sum_{ij} J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-\,(1)} \hat{\mathbf{C}}_j^{+\,(2)} + \hat{\mathbf{C}}_i^{+\,(1)} \hat{\mathbf{C}}_j^{-\,(2)}) \,. \end{split}$$

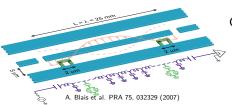
with
$$\omega_i^{(q)} = i\omega_q - \frac{1}{2}(i^2 - i)\alpha_q$$
, $\hat{\mathbf{G}}_i^{(q)} = |i\rangle\langle i|_q$, $\hat{\mathbf{C}}_i^{+(q)} = |i\rangle\langle i - 1|_q$



Cavity mediates

- driven excitation of qubit
- interaction between left and right qubit





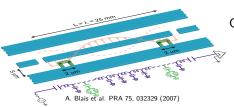
Cavity mediates

- driven excitation of qubit
- interaction between left and right qubit

Optimization Target

Many gates possible, e.g. \sqrt{iSWAP} :

$$\mathbf{\hat{0}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\ 0 & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$



Cavity mediates

- driven excitation of qubit
- interaction between left and right qubit

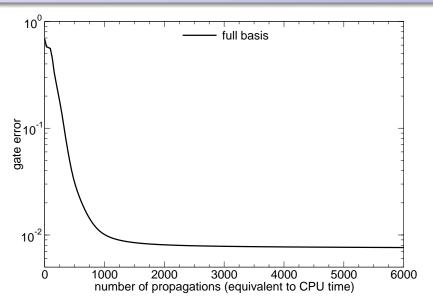
Master Equation

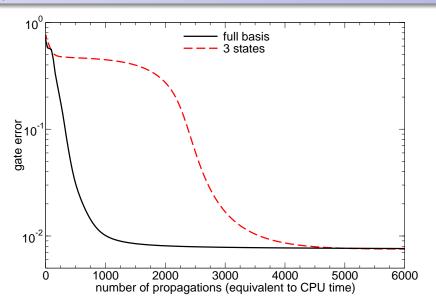
$$rac{\partial \hat{
ho}}{\partial t} = rac{i}{\hbar} [\hat{\mathbf{H}}_{\mathsf{eff}}, \hat{
ho}] + \mathcal{L}_D^{(1)}(\hat{
ho}) + \mathcal{L}_D^{(2)}(\hat{
ho})$$

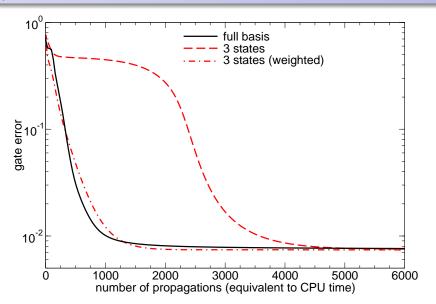
with
$$\mathcal{L}_{D}^{(q)}(\hat{\boldsymbol{\rho}}) = \gamma_{q} \sum_{i=1}^{N-1} iD\left[|i-1\rangle\langle i|_{q}\right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i}D\left[|i\rangle\langle i|_{q}\right] \hat{\boldsymbol{\rho}}$$

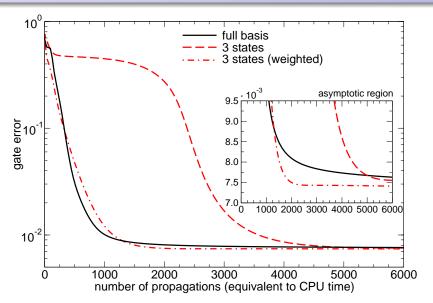
with
$$D\left[\hat{\mathbf{A}}\right]\hat{\boldsymbol{\rho}}=\hat{\mathbf{A}}\hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger}-\frac{1}{2}\left(\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}}\hat{\boldsymbol{\rho}}+\hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}}\right)$$

decay time $T_1=38.0~\mu s$, 32.0 μs ; dephasing time $T_2^*=29.5~\mu s$, 16.0 μs



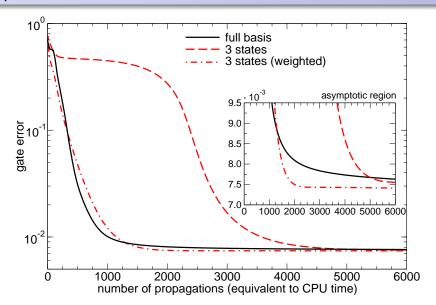


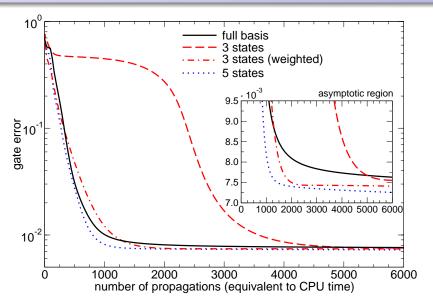




Using Pure States Only

Using Pure States Only



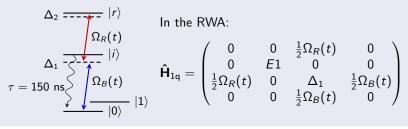


Example 2

Optimization for Robustness under System Fluctuations for a Rydberg Gate

Two Trapped Neutral Atoms

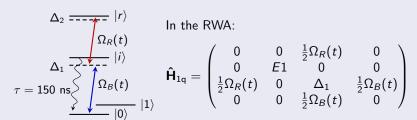
Single-qubit Hamiltonian



$$\mathbf{\hat{H}}_{1q} = egin{pmatrix} 0 & 0 & rac{1}{2}\Omega_R(t) & 0 \ 0 & E1 & 0 & 0 \ rac{1}{2}\Omega_R(t) & 0 & \Delta_1 & rac{1}{2}\Omega_B(t) \ 0 & 0 & rac{1}{2}\Omega_B(t) & 0 \end{pmatrix}$$

Two Trapped Neutral Atoms

Single-qubit Hamiltonian



Two-gubit Hamiltonian

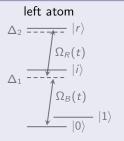
$$\mathbf{\hat{H}}_{2q} = \mathbf{\hat{H}}_{1q} \otimes \mathbb{1} + \mathbb{1} \otimes \mathbf{\hat{H}}_{1q} - U | rr \rangle \langle rr |$$

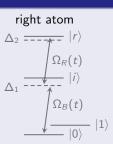
Dipole-dipole interaction when both atoms in Rydberg state.

Only diagonal gates!

Analytical Gate Scheme – Jaksch et al. PRL 85, 2208 (2000)

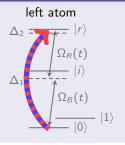
Two trapped Rydberg atoms

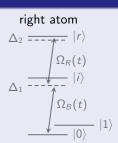




Analytical Gate Scheme – Jaksch et al. PRL 85, 2208 (2000)

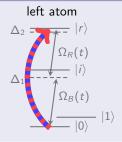
Two trapped Rydberg atoms



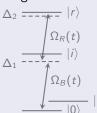


Analytical Gate Scheme – Jaksch et al. PRL 85, 2208 (2000)

Two trapped Rydberg atoms



right atom



Rabi-pulses in three-level systems

Option 1:

two-photon pulse, adiabatic elimination of level $|i\rangle$.

Option 2:

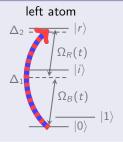
STIRAP. up:

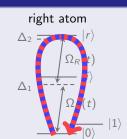
: down:

 \Rightarrow combine both options

Analytical Gate Scheme – Jaksch et al. PRL 85, 2208 (2000)

Two trapped Rydberg atoms





Rabi-pulses in three-level systems

Option 1:

two-photon pulse, adiabatic elimination of level $|i\rangle$.

Option 2:

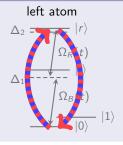
STIRAP. up:

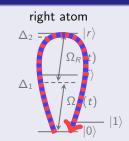
; down:

 \Rightarrow combine both options

Analytical Gate Scheme – Jaksch et al. PRL 85, 2208 (2000)

Two trapped Rydberg atoms





Rabi-pulses in three-level systems

Option 1:

two-photon pulse, adiabatic elimination of level $|i\rangle$.

Option 2:

STIRAP. up:

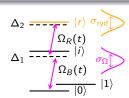
: down:

 \Rightarrow combine both options

Experimental Fluctuations

Fluctuations:

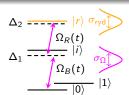
- Rydberg level (width σ_{ryd}) external fields
- Pulse amplitude (width σ_{Ω})

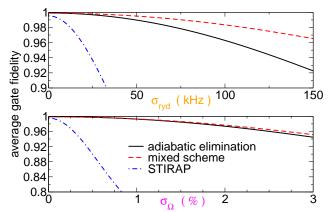


Experimental Fluctuations

Fluctuations:

- Rydberg level (width σ_{ryd}) external fields
- Pulse amplitude (width σ_{Ω})





How can OCT improve the robustness?

Idea: Ensemble Optimization

Generate set of *N* Hamiltonians, sampling parameter fluctuations. Optimize for all Hamiltonians *simultaneously*.

Idea: Ensemble Optimization

Generate set of N Hamiltonians, sampling parameter fluctuations. Optimize for all Hamiltonians simultaneously.

Optimization Functional

$$J = 1 - \sum_{n=1}^{N} \sum_{i=1}^{m} \frac{w_{i,n}}{\operatorname{tr}[\hat{\boldsymbol{
ho}}_{i}^{2}(0)]} \mathfrak{Re} \left\{ \operatorname{tr} \left[\hat{\mathbf{O}} \hat{\boldsymbol{
ho}}_{i}(0) \hat{\mathbf{O}}^{\dagger} \hat{\boldsymbol{
ho}}_{i,n}(T) \right] \right\}$$

- N: number of realizations $\hat{\mathbf{H}}_n$: N = 24
- m: number of states, for each realizations
- $\mathbf{m} \times N$ density matrix propagations!

$$rac{\partial}{\partial t} \hat{m{
ho}}_{i,n}(t) = -\mathrm{i}\hbar[\hat{m{H}}_n(t),\hat{m{
ho}}_{i,n}(t)] + \mathcal{L}_D(\hat{m{
ho}}_{i,n}(t))$$

Idea: Ensemble Optimization

Generate set of *N* Hamiltonians, sampling parameter fluctuations. Optimize for all Hamiltonians *simultaneously*.

Optimization Functional

$$J = 1 - \sum_{n=1}^{N} \sum_{i=1}^{m} \frac{w_{i,n}}{\operatorname{tr}[\hat{\boldsymbol{
ho}}_{i}^{2}(0)]} \mathfrak{Re} \left\{ \operatorname{tr} \left[\hat{\mathbf{O}} \hat{\boldsymbol{
ho}}_{i}(0) \hat{\mathbf{O}}^{\dagger} \hat{\boldsymbol{
ho}}_{i,n}(T) \right] \right\}$$

- N: number of realizations $\hat{\mathbf{H}}_n$: N = 24
- m: number of states, for each realizations ... m = 3?
- $m \times N$ density matrix propagations!

$$rac{\partial}{\partial t} \hat{m{
ho}}_{i,n}(t) = -\mathrm{i}\hbar[\hat{m{H}}_n(t),\hat{m{
ho}}_{i,n}(t)] + \mathcal{L}_D(\hat{m{
ho}}_{i,n}(t))$$

Idea: Ensemble Optimization

Generate set of N Hamiltonians, sampling parameter fluctuations. Optimize for all Hamiltonians simultaneously.

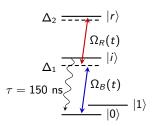
Optimization Functional

$$J = 1 - \sum_{n=1}^{N} \sum_{i=1}^{m} \frac{w_{i,n}}{\operatorname{tr}[\hat{\boldsymbol{
ho}}_{i}^{2}(0)]} \mathfrak{Re} \left\{ \operatorname{tr} \left[\hat{\mathbf{O}} \hat{\boldsymbol{
ho}}_{i}(0) \hat{\mathbf{O}}^{\dagger} \hat{\boldsymbol{
ho}}_{i,n}(T) \right] \right\}$$

- N: number of realizations $\hat{\mathbf{H}}_n$: N=24
- m: number of states, for each realizations ... m = 3? Not 16!
- $m \times N$ density matrix propagations!

$$rac{\partial}{\partial t} \hat{m{
ho}}_{i,n}(t) = -\mathrm{i}\hbar[\hat{m{H}}_n(t),\hat{m{
ho}}_{i,n}(t)] + \mathcal{L}_D(\hat{m{
ho}}_{i,n}(t))$$

Diagonal Gates



no coupling between |0
angle, |1
angle $\hat{f U}={\sf diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$ only diagonal gates are possible

Diagonal Gates

no coupling between $|0\rangle$, $|1\rangle$

$$\hat{\mathbf{U}} = \mathsf{diag}(e^{i\phi_{00}}, e^{i\phi_{01}}, e^{i\phi_{10}}, e^{i\phi_{11}})$$

only diagonal gates are possible

Diagonal Gates

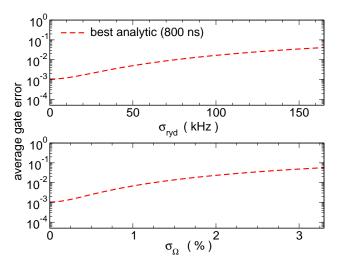
$$\Delta_2$$
 $r\rangle$ $|r\rangle$ $\Omega_R(t)$ $\Omega_R(t)$ $|i\rangle$ $\tau=150$ ns $\Omega_B(t)$ $\Omega_B(t)$ $|1\rangle$

no coupling between $|0\rangle$, $|1\rangle$

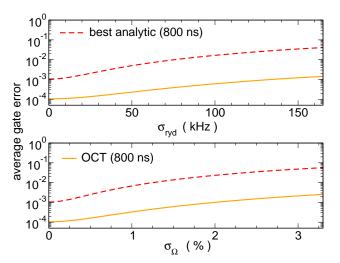
$$\hat{\mathbf{U}} = \mathsf{diag}(e^{i\phi_{00}}, e^{i\phi_{01}}, e^{i\phi_{10}}, e^{i\phi_{11}})$$

only diagonal gates are possible

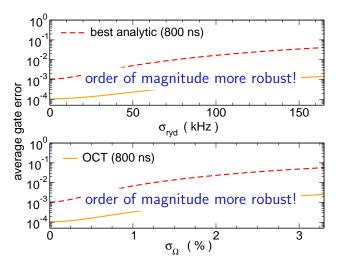
Again: fluctuation of Rydberg level (σ_{Ryd}) and pulse amplitude (σ_{Ω}) .



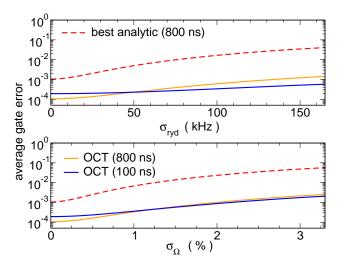
Again: fluctuation of Rydberg level (σ_{Ryd}) and pulse amplitude (σ_{Ω}) .



Again: fluctuation of Rydberg level (σ_{Ryd}) and pulse amplitude (σ_{Ω}) .

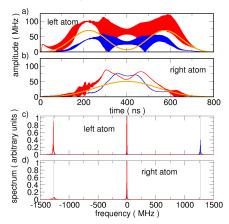


Again: fluctuation of Rydberg level (σ_{Ryd}) and pulse amplitude (σ_{Ω}) .



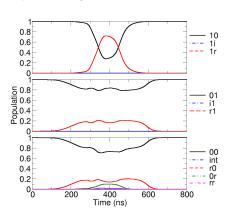
Optimized Pulses & Dynamics

Pulses and Spectra



- STIRAP-like population transfer
- interference between pathways

Population Dynamics



no population in decaying intermediary states

- Efficiently optimizing for robustness w.r.t. dissipation:
 - A set of three density matrices is sufficient (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases

Further reduction possible for restricted systems!

- Efficiently optimizing for robustness w.r.t. dissipation:
 A set of three density matrices is sufficient (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases

Further reduction possible for restricted systems!

- Optimize for Robustness w.r.t. fluctuations in experimental parameters: ensemble optimization
 - ⇒ Example: highly robust Rydberg gates

- Efficiently optimizing for robustness w.r.t. dissipation:
 A set of three density matrices is sufficient (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases

Further reduction possible for restricted systems!

- Optimize for Robustness w.r.t. fluctuations in experimental parameters: ensemble optimization
 - ⇒ Example: highly robust Rydberg gates

Reference:

- ⇒ Goerz, Reich, Koch. arXiv:1312.0111. In press: NJP
- ⇒ Goerz, Halperin, Aytac, Koch, Whaley. arXiv:1401.1858.

Acknowledgments

Kassel:

- Christiane Koch
- Daniel Reich

Berkeley:

Birgitta Whaley

Eli Halperin

Jon Aytac

Acknowledgments

Kassel:

- Christiane Koch
- Daniel Reich

Thank you

Berkeley:

Birgitta Whaley

Eli Halperin

Jon Aytac

- Efficiently optimizing for robustness w.r.t. dissipation:
 A set of three density matrices is sufficient (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases

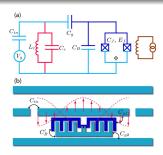
Further reduction possible for restricted systems!

- Optimize for Robustness w.r.t. fluctuations in experimental parameters: ensemble optimization
 - ⇒ Example: highly robust Rydberg gates

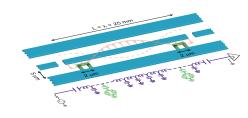
Reference:

- ⇒ Goerz, Reich, Koch. arXiv:1312.0111. In press: NJP
- ⇒ Goerz, Halperin, Aytac, Koch, Whaley. arXiv:1401.1858.

Two Coupled Transmon Qubits

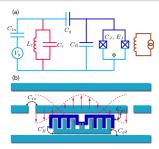


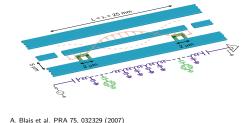
J. Koch et al. PRA 76, 042319 (2007)



A. Blais et al. PRA 75, 032329 (2007)

Two Coupled Transmon Qubits





J. Koch et al. PRA 76, 042319 (2007)

Full Hamiltonian

$$\begin{split} \hat{\mathbf{H}} &= \underbrace{\omega_{c} \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}}_{1} + \underbrace{\omega_{1} \hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{b}}_{1} + \omega_{2} \hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{b}}_{2}}_{2} - \underbrace{\frac{1}{2} (\alpha_{1} \hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{b}}_{1} \hat{\mathbf{b}}_{1} + \alpha_{2} \hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{b}}_{2} \hat{\mathbf{b}}_{2})}_{(3)} + \underbrace{g_{1} (\hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_{1} \hat{\mathbf{a}}^{\dagger}) + g_{2} (\hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_{2} \hat{\mathbf{a}}^{\dagger})}_{(4)} + \underbrace{\epsilon^{*}(t) \hat{\mathbf{a}} + \epsilon(t) \hat{\mathbf{a}}^{\dagger}}_{(5)} \end{split}$$

Effective Hamiltonian

$$\begin{split} \hat{\mathbf{H}}_{\text{eff}} &= \sum_{q=1,2} \sum_{i=0}^{N_q-1} (\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + \sum_{q=1,2} \sum_{i=0}^{N_q-1} g_i^{\text{eff}\,(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+\,(q)} + \hat{\mathbf{C}}_i^{-\,(q)}) \\ &+ \sum_{i:} J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-\,(1)} \hat{\mathbf{C}}_j^{+\,(2)} + \hat{\mathbf{C}}_i^{+\,(1)} \hat{\mathbf{C}}_j^{-\,(2)}) \,. \end{split}$$

Effective Hamiltonian

$$\begin{split} \hat{\mathbf{H}}_{\text{eff}} &= \sum_{q=1,2} \sum_{i=0}^{N_q-1} (\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + \sum_{q=1,2} \sum_{i=0}^{N_q-1} g_i^{\text{eff}\,(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+\,(q)} + \hat{\mathbf{C}}_i^{-\,(q)}) \\ &+ \sum_{ij} J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-\,(1)} \hat{\mathbf{C}}_j^{+\,(2)} + \hat{\mathbf{C}}_i^{+\,(1)} \hat{\mathbf{C}}_j^{-\,(2)}) \,. \end{split}$$

with

$$\omega_i^{(q)} = i\omega_q - \frac{1}{2}(i^2 - i)\alpha_q, \qquad g_i^{(q)} = \sqrt{i}g_q$$

$$\hat{\boldsymbol{\Pi}}_{i}^{(q)} = |i\rangle\langle i|_{q}, \ \hat{\boldsymbol{C}}_{i}^{+(q)} = |i\rangle\langle i-1|_{q}$$

$$\chi_i^{(q)} = \frac{(g_i^{(q)})^2}{(\omega_i^{(q)} - \omega_{i-1}^{(q)} - \omega_c)}$$

$$g_i^{\mathrm{eff}\,(q)} = \frac{g_i^{(q)}}{(\omega_i^{(q)} - \omega_{i-1}^{(q)} - \omega_c)}$$

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity $lpha_2$	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 µs, 32.0 µs
qubit 1,2 dephasing time T_2^st	29.5 μs, 16.0 μs

Effective Hamiltonian

$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}\,(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+\,(q)} + \hat{\mathbf{C}}_i^{-\,(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-\,(1)} \hat{\mathbf{C}}_j^{+\,(2)} + c.c.) \right)$$

Master Equation

$$\mathcal{L}_{D}(\hat{\boldsymbol{\rho}}) = \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} i D \left[|i-1\rangle\langle i|_{q} \right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i} D \left[|i\rangle\langle i|_{q} \right] \hat{\boldsymbol{\rho}} \right),$$

$$\begin{bmatrix} \hat{\boldsymbol{\rho}} \end{bmatrix} \hat{\boldsymbol{\rho}} = \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\rho}}^{\dagger} - \frac{1}{2} \left(\hat{\boldsymbol{\rho}}^{\dagger} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\rho}}^{\dagger} \hat{\boldsymbol{\rho}} \right)$$

with $D\left[\hat{\mathbf{A}}\right]\hat{\boldsymbol{\rho}}=\hat{\mathbf{A}}\hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger}-\frac{1}{2}\left(\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}}\hat{\boldsymbol{\rho}}+\hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}}\right)$

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity α_2	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 µs, 32.0 µs
qubit 1,2 dephasing time T_2^*	29.5 μs, 16.0 μs

Near resonance of α_1 with $\omega_1 - \omega_2$

Effective Hamiltonian

$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}\,(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+\,(q)} + \hat{\mathbf{C}}_i^{-\,(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-\,(1)} \hat{\mathbf{C}}_j^{+\,(2)} + c.c.) \right)$$

Master Equation

$$\begin{split} \mathcal{L}_{D}(\hat{\pmb{\rho}}) &= \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} i D \left[|i-1\rangle \langle i|_{q} \right] \hat{\pmb{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i} D \left[|i\rangle \langle i|_{q} \right] \hat{\pmb{\rho}} \right) \,, \\ \text{with } D \left[\hat{\pmb{\mathbf{A}}} \right] \hat{\pmb{\rho}} &= \hat{\pmb{\mathbf{A}}} \hat{\pmb{\rho}} \hat{\pmb{\mathbf{A}}}^{\dagger} - \frac{1}{2} \left(\hat{\pmb{\mathbf{A}}}^{\dagger} \hat{\pmb{\mathbf{A}}} \hat{\pmb{\rho}} + \hat{\pmb{\rho}} \hat{\pmb{\mathbf{A}}}^{\dagger} \hat{\pmb{\mathbf{A}}} \right) \end{split}$$

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity α_2	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 µs, 32.0 µs
qubit 1,2 dephasing time T_2^*	29.5 μs, 16.0 μs

- Near resonance of α_1 with $\omega_1 \omega_2$
- single frequency drive centered between two qubits

Effective Hamiltonian

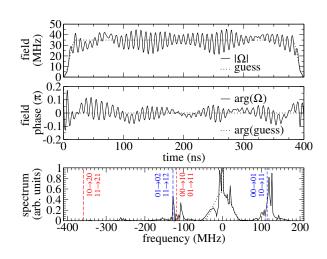
$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}\,(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+\,(q)} + \hat{\mathbf{C}}_i^{-\,(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-\,(1)} \hat{\mathbf{C}}_j^{+\,(2)} + c.c.) \right)$$

Master Equation

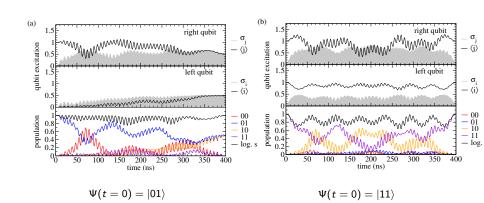
$$\mathcal{L}_{D}(\hat{\boldsymbol{\rho}}) = \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} iD \left[|i-1\rangle\langle i|_{q} \right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i}D \left[|i\rangle\langle i|_{q} \right] \hat{\boldsymbol{\rho}} \right),$$

with
$$D\left[\hat{\mathbf{A}}\right]\hat{\boldsymbol{\rho}} = \hat{\mathbf{A}}\hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger} - \frac{1}{2}\left(\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}}\hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}}\right)$$

Transmon Optimized Pulse



Transmon Population Dynamics



Analytical Gate Scheme

Single-qubit Hamiltonian

$$\Delta_2$$
 $|r\rangle$ $\Omega_R(t)$ $\Omega_R(t)$ $\tau=150$ ns $\Omega_B(t)$ $\Omega_B(t)$ $\Omega_B(t)$

$$\Delta_{2} \xrightarrow{\Gamma} |r\rangle \qquad \text{In the RWA:}$$

$$\Delta_{1} \xrightarrow{\Omega_{R}(t)} |i\rangle \qquad \hat{\mathbf{H}}_{1q} = \begin{pmatrix} 0 & 0 & \frac{1}{2}\Omega_{R}(t) & 0 \\ 0 & E1 & 0 & 0 \\ \frac{1}{2}\Omega_{R}(t) & 0 & \Delta_{1} & \frac{1}{2}\Omega_{B}(t) \\ 0 & 0 & \frac{1}{2}\Omega_{B}(t) & 0 \end{pmatrix}$$

Gate scheme (in blockade regime)