
The Chebychev Propagator
The Inhomogeneous TDSE
Inhomogeneous Chebychev

Implementation

Chebychev Propagator
for Inhomogeneous Schrödinger Equations

Michael Goerz

May 16, 2011

Chebychev Propagator for Inhomogeneous Schrödinger Equations



The Chebychev Propagator
The Inhomogeneous TDSE
Inhomogeneous Chebychev

Implementation

Solving the Schrödinger Equation

Schrödinger Equation

∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 ; e.g. Ĥ =

(
V1(R) µε(t)
µε(t) V2(R)

)

Solution

Evaluation of the Time Evolution Operator

Expand into series: e−iĤt −→
N∑

k=1

anPn(Ĥ)

cf. Runge-Kutta: solving the differential equation, instead of evaluating the analytical
solution
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|Ψ(t)〉 = Ĥ |Ψ(t)〉 ; e.g. Ĥ =

(
V1(R) µε(t)
µε(t) V2(R)
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|Ψ(t)〉 = e−iĤt |Ψ0〉 if Ĥ not time dependent

Evaluation of the Time Evolution Operator
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cf. Runge-Kutta: solving the differential equation, instead of evaluating the analytical
solution
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Chebychev Polynomials

Properties of Chebychev polynomials

P0 = 1, P1(x) = x , Pn(x) = 2xPn−1(x)− Pn−2(x)

Defined over range [−1, 1] → normalize Hamiltonian

Ĥnorm = 2
Ĥ− Emin1

∆E
− 1

Fastest converging polynomial expansion

Pn(x) = cos(nθ) with θ = arccos(x) → Cosine transform for coefficients

Chebychev coefficients

Expansion coefficients an for function f (x):

an =
2− δn0

π

∫ +1

−1

f (x)Pn(x)
√

1− x2
dx

For f (Ĥnorm) = e−iĤnormt : an → Bessel functions.
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Inhomogeneous Schrödinger Equation

∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 + |Φ(t)〉

Note: not the same as nonlinear SE:

e.g.
∂

∂t
|Ψ(t)〉 =

(
Ĥ + |Ψ(t)|2

)
|Ψ(t)〉
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OCT with State-Dependent Costs

Outline
Chebychev propagator for inhomogeneous Schrödinger equations

OCT with a state-dependent constraint in krotov’s formulation

J. P. Paloa R. Kosloff and C. P. Koch, Phys Rev A (2008).

Mamadou Ndong, Ronnie Kosloff, and Christiane P. Koch A new Chebychev propagator for inhomogeneous Schrödinger equations

Optimization Functional

J = −F [Ψt ] +

∫
ga[ε(t)] dt +

∫
gb[Ψ(t)] dt; gb[Ψ] = λb

〈
Ψ(t)

∣∣∣P̂allow

∣∣∣Ψ(t)
〉

also: time-dependent targets
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Reminder: Krotov

1 backward propagation with old pulse

2 forward propagation with new pulse

Ψi Ψfw(t)

ε̃1

Ψfw(t). . .

ε̃2

Ψfw(t)

ε̃nt−2

Ψfw(T )
Ψfw(T )

ε̃nt−1

Ψbw(t0) Ψbw(t)

ε1

Ψbw(t). . .

ε2

Ψbw(t)

εnt−2

Ψt
Ψt

εnt−1

µ̂ µ̂ µ̂. . . µ̂ = τ

Pulse update by matching forward- and backward-propagated states
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Inhomogeneous Backward-Propagation

Daniel: Second Order Krotov Preprint (arXiv:1008.5126v1)

Optimization Functional

J = −F [Ψt ] +

∫
ga[ε(t)] dt +

∫
gb[Ψ(t)] dt; gb[Ψ] = λb

〈
Ψ(t)

∣∣∣P̂allow

∣∣∣Ψ(t)
〉

Pulse Update

∆ε ∝ −Im
〈
χ(0)(t) |µ̂|φ(1)(t)

〉
Backward Propagation

d

dt
|χ(0)(t)〉 = −

i

~
Ĥ
†
[ϕ(0), ε(0)]|χ(0)(t)〉+∇〈ϕ|gb

∣∣
ϕ(0)(t)

|χ(0)(T )〉 = −∇〈ϕ|JT
∣∣
ϕ(0)(T )
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Inhomogeneous Backward-Propagation

Daniel: Second Order Krotov Preprint (arXiv:1008.5126v1)

Optimization Functional

J = −F [Ψt ] +

∫
ga[ε(t)] dt +

∫
gb[Ψ(t)] dt; gb[Ψ] = λb

〈
Ψ(t)

∣∣∣P̂allow

∣∣∣Ψ(t)
〉

Pulse Update

∆ε ∝ −Im
〈
χ(0)(t) |µ̂|φ(1)(t)

〉
Backward Propagation

d

dt
|χ(0)(t)〉 = −

i

~
Ĥ
†
[ϕ(0), ε(0)]|χ(0)(t)〉+ P̂allow

∣∣∣ϕ(0)(t)
〉

|χ(0)(T )〉 = −∇〈ϕ|JT
∣∣
ϕ(0)(T )
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Solving the Inhomogeneous Schrödinger
Equation Numerically
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I. INTRODUCTION

Inhomogeneous time-dependent Schrödinger equations,

i!
"

"t
%"!t"& = Ĥ%"!t"& + Ĝ!t"%#!t"& , !1"

arise in many formal solutions of quantum dynamics. In par-
ticular they have been employed in a time dependent treat-
ment of reactive scattering1,2 and in optimal control theory
!OCT" using time-dependent targets3–6 or state-dependent
constraints.7 In reactive scattering, the inhomogeneity results
from the application of a projection operator.8 This projector
divides the Hilbert space of the reactive system into sub-
spaces corresponding, respectively, to the reactants and to the
products. A reduced description for only the products can be
derived where the time-dependent Schrödinger equation con-
tains an inhomogeneity, i.e., a source term that corresponds
to the creation of the products.2

In OCT, the inhomogeneity may be caused by a projec-
tion operator as well. For example, a partitioning of the Hil-
bert space is implemented by a projection operator in order
to suppress population in a forbidden subspace.7 This leads
to a formulation of OCT with a state-dependent constraint
containing the projection operator. As a result the backward
propagation of the OCT equations includes an inhomogene-
ity in the Schrödinger equation. This term corresponds to the
suppression of probability amplitude in the forbidden sub-
space.

Generally, an inhomogeneous Schrödinger equation
arises in OCT if a time-dependent target or a state-dependent
constraint is utilized. In the common versions of OCT, see,
e.g., Refs. 9 and 10, the target is not explicitly time depen-
dent, it depends only on some final time T. The constraints
enforce the Schrödinger equation and a minimization of the
field energy. However, for explicitly time-dependent

targets3–6 or for a state-dependent constraint,7,11 the optimi-
zation functional contains a contribution of the form

$'
0

T

g#"!t","!!t"$dt ,

where the state %"& of the system enters at each time t.
For the solution of the standard homogeneous time-

dependent Schrödinger equation, a number of numerical
propagation schemes exist.12,13 The Chebychev propagator14

offers the advantage of a numerically exact solution. The
accuracy of the calculation is then determined by the ma-
chine precision of the computer and the error is uniformly
distributed. The propagator is based on approximating the
formal solution of the homogeneous time-dependent
Schrödinger equation,

%"!t + dt"& = e−i/!Ĥdt%"!t"& , !2"

by a series of Chebychev polynomials. Time-dependent in-
homogeneous Schrödinger equations have been solved to
date with split-propagator schemes4 or via a full diagonaliza-
tion of the Hamiltonian.7 While the latter method is numeri-
cally expensive and quickly becomes unfeasible with in-
creasing system size, the first is of only limited accuracy.

Here, we derive a formal solution of the time-dependent
inhomogeneous Schrödinger equation and we adapt it to the
Chebychev propagation scheme. We apply this new propaga-
tor to the optimal control with a state-dependent constraint
and with a time-dependent target. The paper is organized as
follows. Section II presents the formal solution of Eq. !1".
Propagation schemes for the formal solution are derived in
Sec. III. The Chebychev propagation scheme is applied to
OCT with a state-dependent constraint where the system is
forced to remain in a subspace of the total Hilbert space in
Sec. IV. In this case the operator Ĝ in Eq. !1" is independent
of time, Ĝ!t"=Ĝ. In Sec. V, a second application, OCT with
a time-dependent target, is studied keeping the full time de-a"Electronic mail: ckoch@physik.fu-berlin.de.
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I. INTRODUCTION

The dynamics of the interaction of matter with a strong
radiation field is described by time-dependent Schrödinger
equations !TDSEs" where the Hamiltonian is explicitly time
dependent. This description is at the core of the theory of
harmonic generation,1,2 pump-probe spectroscopy,3 and co-
herent control.4,5 Typically, an atom or molecule couples to a
laser pulse via a dipole transition,

Ĥ!t" = Ĥ0 + E!t"!̂ , !1"

with E!t" as the time-dependent electromagnetic field, caus-
ing the explicit time dependence of the Hamiltonian. Simu-
lating these light-matter processes from first principles im-
poses a numerical challenge. Realistic simulations require
efficient procedures with very high accuracy.

For example, in coherent control processes, interaction
of quantum matter with laser light leads to constructive in-
terference in some desired channel and destructive interfer-
ence in all other channels. In time-domain coherent control
such as pump-probe spectroscopy, wave packets created by
radiation at an early time interfere with wave packets gener-
ated at a later time. This means that the relative phase be-
tween different partial wave packets has to be maintained for
a long time with high accuracy. As a result, numerical meth-
ods designed to simulate such phenomena have to be highly
accurate, minimizing the errors in both amplitude and phase.

The difficulty of simulating explicitly time-dependent
Hamiltonians emerges from the fact that the commutator of
the Hamiltonian with itself at different times does not
vanish,6

#Ĥ!t1",Ĥ!t2"$− " 0. !2"

Formally, this effect is taken into account by time ordering
such that the time evolution is given by

Û!T,0" = Te−i/!%0
TĤ!t"dt. !3"

The effect of time ordering is to incorporate higher order
commutators into the propagator Û!T ,0". For strong fields
E!t" and fast time dependences the convergence with respect
to ordering is slow. Methods to incorporate the second order
Magnus term7 have been developed either in a low order
polynomial expansion8,9 or as a split exponential.10

A quantum dynamical propagator that fully accounts for
time ordering is given by the !t , t!" method.11 It is based on
rewriting the Hamiltonian in an extended Hilbert space
where an auxiliary coordinate t! is added and terms such as
E!t!"!̂ are treated as a potential in this degree of freedom.
The Hamiltonian thus looses its explicit dependence on time
t, and can be propagated with one of the available highly
accurate methods for solving the TDSE with time-
independent Hamiltonian.12

Most of the vast literature on the interaction of matter
with time-dependent fields in general3,13–15 and on coherent
control in particular4,16–19 ignores the effect of time ordering.
Popular approaches include Runge–Kutta schemes,7,20,21 the
standard Chebychev propagator with very small time step,22

and the split propagator.13,19,23 Naively it is assumed that if
the time step is small enough the calculation with an explicit
time-dependent Hamiltonian can be made to converge. The
difficulty is that this convergence is very slow—second order
in the time step if the Hamiltonian is stationary in the time
interval and third order if the second order Magnus approxi-
mation is used.8,24 Additionally in many cases the error ac-
cumulates in phase9,25 so that common indicators of error
such as deviation from unitarity are misleading.a"Electronic mail: ckoch@physik.fu-berlin.de.
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Treating the Inhomogeneity in Order m

Inhomogeneous SE

∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 + |Φ(t)〉

Expansion of Φ(t)

|Φ(t)〉m =

m−1∑
j=0

∣∣Φ̄j

〉
Pj (t̄)

≡
m−1∑
j=0

t j

j!

∣∣∣Φ(j)
〉

Expand inhomogeneous term in Chebychev series

Reorder into power series (or use Taylor to begin with)

Decide on which order to solve: 1, 2, 3, maybe 4

The smaller the order, the smaller ∆t has to be
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The Analytical Solution

Inhomogeneous SE (Φ to order m)

∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉+

m−1∑
j=0

t j

j!

∣∣∣Φ(j)
〉

Solution

|Ψ(t)〉(m) =

m−1∑
j=0

t j

j!

∣∣∣λ(j)
〉

+ fm(Ĥ)
∣∣∣λ(m)

〉

fm = (−iĤ)−m

e−iĤt −
m−1∑
j=0

(−iĤt)j

j!

 λ(0) = |Ψ0〉

λ(j) = −iĤ
∣∣∣λ(j−1)

〉
+
∣∣∣Φ(j−1)

〉

e.g.

e.g. |Ψ(t)〉(3) = |Ψ0〉+ t
∣∣λ(1)

〉
+ t2

2

∣∣λ(2)
〉

+ f3(Ĥ)
∣∣λ3
〉
, with

f3(Ĥ) =
(
−iĤ

)−3 (
e−iĤt − 1− iĤt

)
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The Analytical Solution

Inhomogeneous SE (Φ to order m)

∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉+

m−1∑
j=0

t j

j!

∣∣∣Φ(j)
〉

Solution

|Ψ(t)〉(m) =

m−1∑
j=0

t j

j!

∣∣∣λ(j)
〉

+ fm(Ĥ)
∣∣∣λ(m)

〉

fm = (−iĤ)−m

e−iĤt −
m−1∑
j=0

(−iĤt)j

j!

 λ(0) = |Ψ0〉

λ(j) = −iĤ
∣∣∣λ(j−1)

〉
+
∣∣∣Φ(j−1)

〉

e.g. |Ψ(t)〉(0) = e−iĤt |Ψ0〉 → homogeneous propagation
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Chebychev Propagation

Solution

|Ψ(t)〉(m) =

m−1∑
j=0

t j

j!

∣∣∣λ(j)
〉

+ fm(Ĥ)
∣∣∣λ(m)

〉
; |λ〉 ∼

{∣∣∣Φ(j)
〉}

Idea

Evaluate fm(Ĥ) by expanding it into Chebychev Polynomials

(just like for the “standard” Chebychev propagator with f0(Ĥ) = e iĤt)

Algorithm Outline (for fixed m)

For each time step:

determine
{∣∣Φ(j)

〉}
and from that

{
λ(j)
}

run through the Chebychev series for fm

sum everything up, yielding |Ψ(t)〉(m)
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λ(j)
}

run through the Chebychev series for fm

sum everything up, yielding |Ψ(t)〉(m)
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Details of the Algorithm
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Implementation

Global Initialization (before any actual propagation)

Calculate Chebychev Coefficients

Calculate the Chebychev expansion coefficients an for fm(Ĥ), for the chosen order m.

an cannot be calculated analytically (like for the standard Chebychev)

Calculation of an is done through a fast cosine-transform:

an =
2− δn0

N

N−1∑
k=0

fm(θk ) cos(nθk )

Ĥ needs to be normalized → an might have to be re-calculated if spectral radius
changes (after each OCT iteration)

On a non-equidistant time grid, the an would have to be re-calculated at every
time step

For small Ĥ, the term (−iĤ)−m might lead to numerical instability. We could use
Taylor instead. . . . ?
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time step
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Implementation

Local Initialization (at every time step)

Calculate Expansion of Inhomogeneous Term

Calculate all necessary
∣∣Φ(j)

〉
(i.e. up to order m) to approximate the local Φ(ti ),

either by an intermediate Chebychev expansion, fallowed by calculation of coefficients
in the power series, or by a direct Taylor series.

Calculation via Taylor:

Calculate derivatives through FFT

Calculation via Chebychev:

Sample Φ(t) at intermediate points around t by interpolation
(splining should be fine)

Calculate Chebychev coefficients
∣∣Φ̄j

〉
by cosine transform

Calculate
∣∣Φ(j)

〉
from

∣∣Φ̄j

〉
by formulas in References (just collect the powers)
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Propagation Step

Solution

|Ψ(t)〉(m) =

m−1∑
j=0

t j

j!

∣∣∣λ(j)
〉

+ fm(Ĥ)
∣∣∣λ(m)

〉

Calculate
∣∣λ(j)

〉
, j = 0 . . .m − 1

λ(j) = −iĤ
∣∣∣λ(j−1)

〉
+
∣∣∣Φ(j−1)

〉
Calculate fm(Ĥ)

∣∣λ(m)
〉

by Chebychev recursion (Choose N to reach machine
precision)

fm(Ĥ)
∣∣∣λ(m)

〉
=

N∑
n=1

anPn(Ĥ)
∣∣∣λ(m)

〉
Pn(Ĥ) = 2ĤPn−1(Ĥ)− Pn−2(Ĥ)

Calculate |Ψ(t)〉(m)
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Inhomogeneous Chebychev in QDYN
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Implementation

Propagation Routines (prop.f90)

prop

subroutine prop(psi, grid, ham, work, para, from ti, to ti, bw, &

& info hook, pulses, alt pulse, upd hook, storage)

prop with optional inhomogeneous term

subroutine prop(psi, grid, ham, work, para, from ti, to ti, bw, inh psi, &
& get inh phi, info hook, pulses, alt pulse, upd hook, storage)

inh psi: stored array of forward-propagated states

get inh phi: function that calculates |Φ〉 from |Ψ〉 (e.g. P̂allow |Ψ〉).

prop step

subroutine prop step(psi, grid, ham, work, para, ti, bw, &

& pulses, alt pulses, alt pulse, upd hook)

prop step with optional inhomogeneous term

subroutine prop step(psi, grid, ham, work, para, ti, bw, inh psi, &

& get inh phi, pulses, alt pulses, alt pulse, upd hook)
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Propagation Routines (prop.f90)
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prop step
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& pulses, alt pulses, alt pulse, upd hook)

prop step with optional inhomogeneous term

subroutine prop step(psi, grid, ham, work, para, ti, bw, inh psi, &

& get inh phi, pulses, alt pulses, alt pulse, upd hook)
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Calculation of Chebychev Coefficients

Calculate Chebychev Coefficients

Calculate the Chebychev expansion coefficients an for fm(Ĥ), for the chosen order m.

in inhom cheby.f90:
subroutine init inh cheby(ham, wcheby, order, para)

Use the same work array (wcheby) as for the homogeneous Chebychev
propagation.

Sufficient an are calculated and stored in wcheby to reach machine precision

Watch out for numerical instability (→ Taylor)
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Implementation

Expansion of Inhomogeneous Term

Calculate Expansion of Inhomogeneous Term

Calculate all necessary
∣∣Φ(j)

〉
(i.e. up to order m) to approximate the local Φ(ti ),

either by an intermediate Chebychev expansion, fallowed by calculation of coefficients
in the power series, or by a direct Taylor series.

in inhom cheby.f90:
subroutine expand inh phi(inh psi, get inh phi, order, phi coeffs)

phi coeffs stores the
∣∣Φ(j)

〉
(power series)

invoke monic transf to calculate
∣∣Φ(j)

〉
from

∣∣Φ̄j

〉
Continue with calculation of

∣∣λ(j)
〉
:

subroutine get inh lambda(lambda, phi, ham, ...)
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Implementation

Performing the Propagation Step

Solution

|Ψ(t)〉(m) =

m−1∑
j=0

t j

j!

∣∣∣λ(j)
〉

+ fm(Ĥ)
∣∣∣λ(m)

〉

in inhom cheby.f90:
subroutine inhom cheby(psi, work, ham, grid, lambda, para, dt, ti, &

& alt pulses, alt pulse)

Identical interface to cheby, except for λ

Inhomogeneous Chebychev coefficients are implicit in work
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