Chebychev Propagator for Inhomogeneous Schrödinger Equations

Michael Goerz

May 16, 2011

Solving the Schrödinger Equation

Schrödinger Equation

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathbf{H}} \ket{\Psi(t)}; \quad ext{ e.g. } \hat{\mathbf{H}} = egin{pmatrix} V_1(R) & \mu\epsilon(t) \ \mu\epsilon(t) & V_2(R) \end{pmatrix}$$

Solving the Schrödinger Equation

Schrödinger Equation

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathbf{H}} \ket{\Psi(t)}; \quad ext{ e.g. } \hat{\mathbf{H}} = egin{pmatrix} V_1(R) & \mu\epsilon(t) \\ \mu\epsilon(t) & V_2(R) \end{pmatrix}$$

Solution

$$\ket{\Psi(t)} = e^{-i\hat{\mathbf{H}}t} \ket{\Psi_0}$$
 if $\hat{\mathbf{H}}$ not time dependent

Solving the Schrödinger Equation

Schrödinger Equation

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathbf{H}} \ket{\Psi(t)}; \quad ext{ e.g. } \hat{\mathbf{H}} = egin{pmatrix} V_1(R) & \mu\epsilon(t) \\ \mu\epsilon(t) & V_2(R) \end{pmatrix}$$

Solution

$$|\Psi(t+\Delta t)
angle=e^{-i\hat{H}\Delta t}\ket{\Psi(t)}$$
 $ightarrow$ piecewise constant pulses

Solving the Schrödinger Equation

Schrödinger Equation

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathbf{H}} \ket{\Psi(t)}; \quad ext{ e.g. } \hat{\mathbf{H}} = egin{pmatrix} V_1(R) & \mu\epsilon(t) \\ \mu\epsilon(t) & V_2(R) \end{pmatrix}$$

Solution

$$|\Psi(t+\Delta t)
angle=e^{-i\hat{\mathsf{H}}\Delta t}\ket{\Psi(t)} o$$
 piecewise constant pulses

Evaluation of the Time Evolution Operator

Expand into series:
$$e^{-i\hat{H}t} \longrightarrow \sum_{k=1}^{N} a_n P_n(\hat{H})$$

Solving the Schrödinger Equation

Schrödinger Equation

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathbf{H}} \ket{\Psi(t)}; \quad ext{ e.g. } \hat{\mathbf{H}} = egin{pmatrix} V_1(R) & \mu\epsilon(t) \ \mu\epsilon(t) & V_2(R) \end{pmatrix}$$

Solution

$$|\Psi(t+\Delta t)
angle=e^{-i\hat{\mathsf{H}}\Delta t}\ket{\Psi(t)} o$$
 piecewise constant pulses

Evaluation of the Time Evolution Operator

Expand into series:
$$e^{-i\hat{H}t} \longrightarrow \sum_{k=1}^{N} a_n P_n(\hat{H})$$

cf. Runge-Kutta: solving the differential equation, instead of evaluating the analytical solution

Chebychev Polynomials

Properties of Chebychev polynomials

•
$$P_0 = 1$$
, $P_1(x) = x$, $P_n(x) = 2xP_{n-1}(x) - P_{n-2}(x)$

 \blacksquare Defined over range $[-1,1] \rightarrow$ normalize Hamiltonian

$$\hat{\mathbf{H}}_{\mathsf{norm}} = 2 \frac{\hat{\mathbf{H}} - \mathcal{E}_{\mathsf{min}} \mathbb{1}}{\Delta \mathcal{E}} - \mathbb{1}$$

- Fastest converging polynomial expansion
- $P_n(x) = \cos(n\theta)$ with $\theta = \arccos(x) \rightarrow \text{Cosine transform for coefficients}$

Chebychev coefficients

• Expansion coefficients a_n for function f(x):

$$a_n = rac{2-\delta_{n0}}{\pi} \int_{-1}^{+1} rac{f(x) P_n(x)}{\sqrt{1-x^2}} \, \mathrm{d}x$$

For
$$f(\hat{\mathbf{H}}_{norm}) = e^{-i\hat{\mathbf{H}}_{norm}t}$$
: $a_n \to \text{Bessel functions}$.

Inhomogeneous Schrödinger Equation

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \mathbf{\hat{H}} \ket{\Psi(t)} + \ket{\Phi(t)}$$

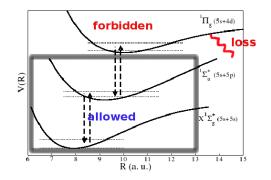
Inhomogeneous Schrödinger Equation

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \mathbf{\hat{H}} \ket{\Psi(t)} + \ket{\Phi(t)}$$

Note: not the same as *nonlinear* SE:

e.g.
$$\frac{\partial}{\partial t} |\Psi(t)\rangle = \left(\hat{\mathbf{H}} + |\Psi(t)|^2\right) |\Psi(t)\rangle$$

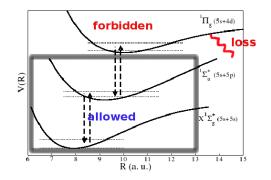
OCT with State-Dependent Costs



Optimization Functional

$$J = -F[\Psi_t] + \int g_a[\epsilon(t)] \,\mathrm{d}t + \int g_b[\Psi(t)] \,\mathrm{d}t; \qquad g_b[\Psi] = \lambda_b \left\langle \Psi(t) \left| \hat{\mathsf{P}}_{\mathsf{allow}} \right| \Psi(t) \right\rangle$$

OCT with State-Dependent Costs

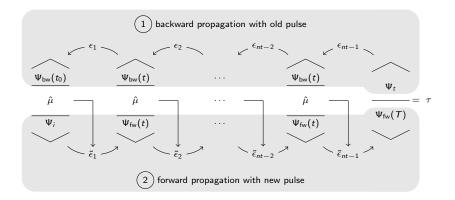


Optimization Functional

$$J = -F[\Psi_t] + \int g_a[\epsilon(t)] \,\mathrm{d}t + \int g_b[\Psi(t)] \,\mathrm{d}t; \qquad g_b[\Psi] = \lambda_b \left\langle \Psi(t) \left| \hat{\mathsf{P}}_{\mathsf{allow}} \right| \Psi(t) \right\rangle$$

also: time-dependent targets

Reminder: Krotov



Pulse update by matching forward- and backward-propagated states

Inhomogeneous Backward-Propagation

Daniel: Second Order Krotov Preprint (arXiv:1008.5126v1)

Optimization Functional $J = -F[\Psi_t] + \int g_a[\epsilon(t)] dt + \int g_b[\Psi(t)] dt; \qquad g_b[\Psi] = \lambda_b \left\langle \Psi(t) \left| \hat{\mathbf{P}}_{allow} \right| \Psi(t) \right\rangle$

Pulse Update

$$\Delta \epsilon \propto - \Im \mathfrak{m} \left\langle \chi^{(0)}(t) \left| \hat{oldsymbol{\mu}}
ight| \phi^{(1)}(t)
ight
angle$$

Backward Propagation

$$\begin{aligned} \frac{d}{dt} |\chi^{(0)}(t)\rangle &= -\frac{i}{\hbar} \hat{\mathbf{h}}^{\dagger} [\varphi^{(0)}, \epsilon^{(0)}] |\chi^{(0)}(t)\rangle + \nabla_{\langle \varphi | \mathbf{g}_{b} |_{\varphi^{(0)}(t)}} \\ |\chi^{(0)}(T)\rangle &= -\nabla_{\langle \varphi | J_{T} |_{\varphi^{(0)}(T)}} \end{aligned}$$

Inhomogeneous Backward-Propagation

Daniel: Second Order Krotov Preprint (arXiv:1008.5126v1)

Optimization Functional $J = -F[\Psi_t] + \int g_a[\epsilon(t)] dt + \int g_b[\Psi(t)] dt; \qquad g_b[\Psi] = \lambda_b \left\langle \Psi(t) \left| \hat{\mathbf{P}}_{allow} \right| \Psi(t) \right\rangle$

Pulse Update

$$\Delta \epsilon \propto - \Im \mathfrak{m} \left\langle \chi^{(0)}(t) \left| \hat{oldsymbol{\mu}}
ight| \phi^{(1)}(t)
ight
angle$$

Backward Propagation

$$\begin{array}{lll} \displaystyle \frac{d}{dt} |\chi^{(0)}(t)\rangle & = & \displaystyle -\frac{i}{\hbar} \hat{\mathbf{H}}^{\dagger}[\varphi^{(0)}, \epsilon^{(0)}] |\chi^{(0)}(t)\rangle + \hat{\mathbf{P}}_{\mathsf{allow}} \left|\varphi^{(0)}(t)\right\rangle \\ & |\chi^{(0)}(T)\rangle & = & \displaystyle -\nabla_{\langle\varphi|} J_{T} \big|_{\varphi^{(0)}(T)} \end{array}$$

Solving the Inhomogeneous Schrödinger Equation Numerically

References

[1] JCP 130, 124108 (2009)

THE JOURNAL OF CHEMICAL PHYSICS 130, 124108 (2009)

A Chebychev propagator for inhomogeneous Schrödinger equations

Mamadou Ndong,¹ Hillel Tal-Ezer,² Ronnie Kosloff,³ and Christiane P. Koch^{1,a)} Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany School of Computer Sciences, The Academic College of Tel-Aviv Yaffo, 2 Rabenu Yeruham St., Tel-Aviv 61803, Israel Department of Physical Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel

[2] JCP 132, 064105 (2010)

THE JOURNAL OF CHEMICAL PHYSICS 132, 064105 (2010)

A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians

Marnadou Ndong,¹ Hillel Tal-Ezer,² Ronnie Kosloff,³ and Christiane P. Koch^{1,a)} ¹Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany ²School of Computer Sciences, The Academic College of Tel Aviv-Yaffo, Rabenu Yeruham St., Tel-Aviv 61803, Israel ³Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel

Treating the Inhomogeneity in Order m

Inhomogeneous SE

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathbf{H}} \ket{\Psi(t)} + \ket{\Phi(t)}$$

Expansion of $\Phi(t)$

$$|\Phi(t)\rangle_m = \sum_{j=0}^{m-1} \left|\bar{\Phi}_j\right\rangle P_j(\bar{t})$$

Expand inhomogeneous term in Chebychev series

Treating the Inhomogeneity in Order m

Inhomogeneous SE

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathbf{H}} \ket{\Psi(t)} + \ket{\Phi(t)}$$

Expansion of $\Phi(t)$

$$|\Phi(t)\rangle_m = \sum_{j=0}^{m-1} \left|\bar{\Phi}_j\right\rangle P_j(\bar{t}) \equiv \sum_{j=0}^{m-1} \frac{t^j}{j!} \left|\Phi^{(j)}\right\rangle$$

- Expand inhomogeneous term in Chebychev series
- Reorder into power series (or use Taylor to begin with)

Treating the Inhomogeneity in Order m

Inhomogeneous SE

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathbf{H}} \ket{\Psi(t)} + \ket{\Phi(t)}$$

Expansion of $\Phi(t)$

$$|\Phi(t)\rangle_m = \sum_{j=0}^{m-1} \left|\bar{\Phi}_j\right\rangle P_j(\bar{t}) \equiv \sum_{j=0}^{m-1} \frac{t^j}{j!} \left|\Phi^{(j)}\right\rangle$$

- Expand inhomogeneous term in Chebychev series
- Reorder into power series (or use Taylor to begin with)
- Decide on which order to solve: 1, 2, 3, maybe 4
- The smaller the order, the smaller Δt has to be

The Analytical Solution

Inhomogeneous SE (Φ to order *m*)

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathsf{H}} \ket{\Psi(t)} + \sum_{j=0}^{m-1} rac{t^j}{j!} \Big| \Phi^{(j)} \Big
angle$$

Solution

$$\left|\Psi(t)
ight
angle_{(m)}=\sum_{j=0}^{m-1}rac{t^{j}}{j!}\left|\lambda^{(j)}
ight
angle+f_{m}(\hat{\mathbf{H}})\left|\lambda^{(m)}
ight
angle$$

$$f_{m} = (-i\hat{\mathbf{H}})^{-m} \left(e^{-i\hat{\mathbf{H}}t} - \sum_{j=0}^{m-1} \frac{(-i\hat{\mathbf{H}}t)^{j}}{j!} \right) \qquad \lambda^{(0)} = |\Psi_{0}\rangle$$
$$\lambda^{(j)} = -i\hat{\mathbf{H}} \left| \lambda^{(j-1)} \right\rangle + \left| \Phi^{(j-1)} \right\rangle$$

The Analytical Solution

Inhomogeneous SE (Φ to order *m*)

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathsf{H}} \ket{\Psi(t)} + \sum_{j=0}^{m-1} rac{t^j}{j!} \Big| \Phi^{(j)} \Big
angle$$

Solution

$$\left|\Psi(t)
ight
angle_{(m)}=\sum_{j=0}^{m-1}rac{t^{j}}{j!}\left|\lambda^{(j)}
ight
angle+f_{m}(\hat{\mathbf{H}})\left|\lambda^{(m)}
ight
angle$$

$$\mathbf{f}_{m} = (-i\hat{\mathbf{H}})^{-m} \left(e^{-i\hat{\mathbf{H}}t} - \sum_{j=0}^{m-1} \frac{(-i\hat{\mathbf{H}}t)^{j}}{j!} \right) \qquad \lambda^{(0)} = |\Psi_{0}\rangle$$
$$\lambda^{(j)} = -i\hat{\mathbf{H}} \left| \lambda^{(j-1)} \right\rangle + \left| \Phi^{(j-1)} \right\rangle$$

e.g.
$$|\Psi(t)\rangle_{(3)} = |\Psi_0\rangle + t \left|\lambda^{(1)}\right\rangle + \frac{t^2}{2}\left|\lambda^{(2)}\right\rangle + f_3(\hat{\mathbf{H}})\left|\lambda^3\right\rangle$$
, with $f_3(\hat{\mathbf{H}}) = \left(-i\hat{\mathbf{H}}\right)^{-3} \left(e^{-i\hat{\mathbf{H}}t} - 1 - i\hat{\mathbf{H}}t\right)$

The Analytical Solution

Inhomogeneous SE (Φ to order m)

$$rac{\partial}{\partial t} \ket{\Psi(t)} = \hat{\mathsf{H}} \ket{\Psi(t)} + \sum_{j=0}^{m-1} rac{t^j}{j!} \Big| \Phi^{(j)} \Big
angle$$

Solution

$$\left|\Psi(t)
ight
angle_{(m)}=\sum_{j=0}^{m-1}rac{t^{j}}{j!}\left|\lambda^{(j)}
ight
angle+f_{m}(\hat{\mathbf{H}})\left|\lambda^{(m)}
ight
angle$$

$$\mathbf{f}_{m} = (-i\hat{\mathbf{H}})^{-m} \left(e^{-i\hat{\mathbf{H}}t} - \sum_{j=0}^{m-1} \frac{(-i\hat{\mathbf{H}}t)^{j}}{j!} \right) \qquad \lambda^{(0)} = |\Psi_{0}\rangle \\ \lambda^{(j)} = -i\hat{\mathbf{H}} \left| \lambda^{(j-1)} \right\rangle + \left| \Phi^{(j-1)} \right\rangle$$

e.g. $\ket{\Psi(t)}_{(0)} = e^{-i\hat{H}t} \ket{\Psi_0} \quad o \quad \text{homogeneous propagation}$

Chebychev Propagation

Solution

$$\left|\Psi(t)
ight
angle_{(m)} = \sum_{j=0}^{m-1} \frac{t^{j}}{j!} \left|\lambda^{(j)}
ight
angle + f_{m}(\hat{\mathbf{H}}) \left|\lambda^{(m)}
ight
angle; \qquad \left|\lambda
ight
angle \sim \left\{\left|\Phi^{(j)}
ight
angle
ight\}$$

Idea

Evaluate $f_m(\hat{\mathbf{H}})$ by expanding it into Chebychev Polynomials (just like for the "standard" Chebychev propagator with $f_0(\hat{\mathbf{H}}) = e^{i\hat{\mathbf{H}}t}$)

Chebychev Propagation

Solution

$$\left|\Psi(t)
ight
angle_{(m)} = \sum_{j=0}^{m-1} \frac{t^{j}}{j!} \left|\lambda^{(j)}
ight
angle + f_{m}(\hat{\mathbf{H}}) \left|\lambda^{(m)}
ight
angle; \qquad \left|\lambda
ight
angle \sim \left\{\left|\Phi^{(j)}
ight
angle
ight\}$$

Idea

Evaluate $f_m(\hat{\mathbf{H}})$ by expanding it into Chebychev Polynomials (just like for the "standard" Chebychev propagator with $f_0(\hat{\mathbf{H}}) = e^{i\hat{\mathbf{H}}t}$)

Algorithm Outline (for fixed m)

For each time step:

- determine $\{ | \Phi^{(j)} \rangle \}$ and from that $\{ \lambda^{(j)} \}$
- run through the Chebychev series for f_m
- sum everything up, yielding $|\Psi(t)\rangle_{(m)}$

Details of the Algorithm

Global Initialization (before any actual propagation)

Calculate Chebychev Coefficients

Calculate the Chebychev expansion coefficients a_n for $f_m(\hat{\mathbf{H}})$, for the chosen order m.

Global Initialization (before any actual propagation)

Calculate Chebychev Coefficients

Calculate the Chebychev expansion coefficients a_n for $f_m(\hat{\mathbf{H}})$, for the chosen order m.

- a_n cannot be calculated analytically (like for the standard Chebychev)
- Calculation of *a_n* is done through a fast cosine-transform:

$$a_n = \frac{2 - \delta_{n0}}{N} \sum_{k=0}^{N-1} f_m(\theta_k) \cos(n\theta_k)$$

- \hat{H} needs to be normalized $\rightarrow a_n$ might have to be re-calculated if spectral radius changes (after each OCT iteration)
- On a non-equidistant time grid, the an would have to be re-calculated at every time step
- For small Ĥ, the term (-iĤ)^{-m} might lead to numerical instability. We could use Taylor instead. ...?

Local Initialization (at every time step)

Calculate Expansion of Inhomogeneous Term

Calculate all necessary $|\Phi^{(j)}\rangle$ (i.e. up to order *m*) to approximate the local $\Phi(t_i)$, either by an intermediate Chebychev expansion, fallowed by calculation of coefficients in the power series, or by a direct Taylor series.

Local Initialization (at every time step)

Calculate Expansion of Inhomogeneous Term

Calculate all necessary $|\Phi^{(j)}\rangle$ (i.e. up to order *m*) to approximate the local $\Phi(t_i)$, either by an intermediate Chebychev expansion, fallowed by calculation of coefficients in the power series, or by a direct Taylor series.

Calculation via Taylor:

Calculate derivatives through FFT

Calculation via Chebychev:

- Sample Φ(t) at intermediate points around t by interpolation (splining should be fine)
- \blacksquare Calculate Chebychev coefficients $\left| ar{\Phi}_{j}
 ight
 angle$ by cosine transform
- Calculate $|\Phi^{(j)}\rangle$ from $|\bar{\Phi}_j\rangle$ by formulas in References (just collect the powers)

Propagation Step

Solution

$$\left|\Psi(t)
ight
angle_{(m)}=\sum_{j=0}^{m-1}rac{t^{j}}{j!}\left|\lambda^{(j)}
ight
angle+f_{m}(\hat{\mathbf{H}})\left|\lambda^{(m)}
ight
angle$$

• Calculate
$$\left|\lambda^{(j)}
ight
angle,\,j=0\ldots m-1$$

$$\lambda^{(j)} = -i\hat{\mathbf{H}} \left| \lambda^{(j-1)} \right\rangle + \left| \Phi^{(j-1)} \right\rangle$$

Calculate $f_m(\hat{\mathbf{H}}) | \lambda^{(m)} \rangle$ by Chebychev recursion (Choose N to reach machine precision)

$$f_m(\hat{\mathbf{H}}) \left| \lambda^{(m)} \right\rangle = \sum_{n=1}^{N} \mathbf{a}_n P_n(\hat{\mathbf{H}}) \left| \lambda^{(m)} \right\rangle$$
$$P_n(\hat{\mathbf{H}}) = 2\hat{\mathbf{H}} P_{n-1}(\hat{\mathbf{H}}) - P_{n-2}(\hat{\mathbf{H}})$$

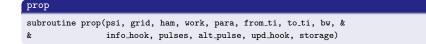
• Calculate $|\Psi(t)\rangle_{(m)}$

Inhomogeneous Chebychev in QDYN

Propagation Routines (prop.f90)

prop_step

Propagation Routines (prop.f90)



prop with optional inhomogeneous term

- inh_psi: stored array of forward-propagated states
- **get_inh_phi**: function that calculates $|\Phi\rangle$ from $|\Psi\rangle$ (e.g. $\hat{\mathbf{P}}_{allow} |\Psi\rangle$).

prop_step

prop_step with optional inhomogeneous term

Calculation of Chebychev Coefficients

Calculate Chebychev Coefficients

Calculate the Chebychev expansion coefficients a_n for $f_m(\hat{\mathbf{H}})$, for the chosen order m.

in inhom_cheby.f90:

subroutine init_inh_cheby(ham, wcheby, order, para)

- Use the same work array (wcheby) as for the homogeneous Chebychev propagation.
- Sufficient a_n are calculated and stored in wcheby to reach machine precision
- Watch out for numerical instability (\rightarrow Taylor)

Expansion of Inhomogeneous Term

Calculate Expansion of Inhomogeneous Term

Calculate all necessary $|\Phi^{(j)}\rangle$ (i.e. up to order *m*) to approximate the local $\Phi(t_i)$, either by an intermediate Chebychev expansion, fallowed by calculation of coefficients in the power series, or by a direct Taylor series.

```
in inhom_cheby.f90:
subroutine expand_inh_phi(inh_psi, get_inh_phi, order, phi_coeffs)

    phi_coeffs stores the |\Phi^{(j)}\rangle (power series)

    invoke monic_transf to calculate |\Phi^{(j)}\rangle from |\bar{\Phi}_j\rangle

Continue with calculation of |\lambda^{(j)}\rangle:

subroutine get_inh_lambda(lambda, phi, ham, ...)
```

Performing the Propagation Step

Solution

$$\left|\Psi(t)
ight
angle_{(m)}=\sum_{j=0}^{m-1}rac{t^{j}}{j!}\left|\lambda^{(j)}
ight
angle+f_{m}(\hat{\mathbf{H}})\left|\lambda^{(m)}
ight
angle$$

 \blacksquare Identical interface to cheby, except for λ

Inhomogeneous Chebychev coefficients are implicit in work