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Abstract
We consider two transmon qubits [1] coupled via a cavity bus [2]. The strong coupling of each qubit
to the shared cavity modes provides an indirect interaction that can be used to implement a two-
quantum gate (e.g. CNOT, CPHASE). The analysis of such a system is often done with an effective
spin-Hamiltonian. We show that generally, the approximation of limiting oneself to the two lowest-
lying qubit levels and a limited number of cavity modes may not hold in all cases. Describing the
system numerically allows us to take into account an arbitrary number of qubit and cavity excitations.
Optimal control theory (OCT), specifically Krotov’s method [3], is used to find microwave pulses that
drive the full system in the desired way in the shortest possible amount of time. The complete system
Hamiltonian allows for complex dynamics that OCT can fully exploit. We show results from such
an optimization for a CPHASE and CNOT gate, for different pulse durations and central frequencies.
Lastly, we also discuss decoherence, describing the system dynamics with a master equation in Lindblad
form [4], and give an outlook on how OCT may find robust pathways.

1 Two Transmon Qubits Coupled via Cavity Bus

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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superconducting qubits inside a transmission line
resonator, Fig. from [5]

Parameters:

• ωc = 8.3 GHz
• ω1 = 6.5 GHz
• ω2 = 6.6 GHz
• α1 = α2 = 150 MHz
• J = 5 MHz
• g1 = g2 = 100 MHz
• |ε(t)| < 50 MHz (if possible)

Ĥ = ωcâ
†â︸ ︷︷ ︸

1©
+ω1b̂

†
1b̂1 + ω2b̂

†
2b̂2 − (α1b̂

†
1b̂
†
1b̂1b̂1 + α2b̂

†
2b̂
†
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+

+ J(b̂
†
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3©
+ g1(b̂

†
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†
2â + b̂2â†)︸ ︷︷ ︸

4©
+ ε∗(t)â + ε(t)â†︸ ︷︷ ︸

5©

(1)

with 1© the cavity harmonic oscillator, 2© qubit anharmonic oscillators, 3© direct qubit-qubit coupling,
4© qubit-cavity coupling, and 5© cavity coupling to control field ε(t) ∼ E0 cos(ωLt).

Note: Direct qubit-qubit coupling is weak; entanglement is primarily reached indirectly via interaction
with the cavity 4©.

2 Optimization: Krotov Method
The Hamiltonian in Eq. (1) can be used to reach a large number of different two-qubit gates. We
optimize for Ô =CNOT, CPHASE by minimizing the functional J containing the gate fidelity F and a
running cost ensuring monotonic convergence, with a scaling parameter λa and a shape function S(t).

J [{φk}, ε] = −F [{φk(T )}] + λa

∫ T

0

∆ε(t)

S(t)
dt , F =

1

16
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(2)

with ∆ε = εnew − εold, for |φk〉 ∈ {|00〉 , |01〉 , |10〉 , |11〉}, |φk(t)〉 = Û(t, 0; ε) |φk〉.
Pulse update formula [3]:

∆ε(t) =
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Im
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for choices of F requiring second order

}
, (3)

with |χk(T )〉 ≡ ∂F

∂ 〈φk(T )| =
1
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3 Decoherence
dρ̂

dt
= −i[Ĥ, ρ̂] + κD[â]ρ̂ +

∑
i=1,2

[∑
j

γi,jD[Π̂
i
j,j+1]ρ̂ + 2γφ,iD[Π̂

i
ε]ρ̂ +

∑
j

γthi,jD[Π̂
i
j+1,j]ρ̂

]
(4)

with D[Â]ρ̂ =
1

2

(
2Âρ̂Â

2 − Â
+

Âρ̂− ρ̂Â
+

Â
)
, Π̂

i
n,m = |n〉〈m| , Π̂

i
ε =

∑
n

εn |n〉〈n|

The parameters γi,j, γφ,i and γthj,i are decay, dephasing and leakage rates, respectively. The cavity
decay is described by κ.

It is straightforward to write the Krotov update equation (3) for Liouville space, using density matrices
instead of states and using Eq. (4) for propagation. It can be shown that it is sufficient to use three
density matrices as “basis states”:

ρ
(1)
ij =

2(N − i + 1)

N(N + 1)
δij , ρ

(2)
ij =

N2 − 2

N2
δi1δji +

1

N2
δ1j +

1

N2
δi1 , ρ

(3)
ij =

1

N
δij .

The most straightforward choice of a fidelity in this case is given by F =
∑
ikl

∣∣∣(ρ̂(i)(T )− Ôρ̂(i)Ô
†)
kl

∣∣∣2 .
Instead of a fidelity based on the Frobenius norm, any other matrix norm may be used.

4 Optimization Results
Overview

#
ω

guess
L T E

opt
0 Gate Error

[GHz] [ns] [MHz]

CPHASE

1 6.59 (qubit) 100 1000 3.38 · 10−1

2 6.59 (qubit) 250 700 7.07 · 10−2

3 8.30 (cavity) 250 600 2.91 · 10−2

4 6.59 (qubit) 1000 80 2.41 · 10−2 *

5 8.30 (cavity) 1000 50 3.20 · 10−2

6 8.30 (cavity) 5000 35 9.70 · 10−3 *

CNOT

7 6.59 (qubit) 100 1100 3.53 · 10−1

8 6.59 (qubit) 250 850 4.52 · 10−2

9 8.30 (cavity) 250 700 2.99 · 10−2

10 6.59 (qubit) 1000 120 1.03 · 10−2 *

11 8.30 (cavity) 1000 120 1.50 · 10−3 *

* Gate Error < 1 · 10−3 expected with further optimization

• Limits on fidelity: pulse duration too short to
generate necessary entanglement (pulse 1,7); dif-
ficulty to restore cavity ground state if too many
excitations (pulse 5).
• There is a tradeoff between pulse intensity and

durations. E0 < 50 MHz for T > 1000 ns
• Starting with different guess pulses, different mech-

anisms may be found implementing the same
gate: pulse 5 implements CPHASE using only
cavity-excitation (> 70 cavity levels), but al-
most no qubit excitation. Pulse 4 (shown below)
implements the gate using qubit excitations, with
minimal use of the cavity.
• Solutions may use 4-7 qubit levels, 15-100 cav-

ity levels. Pulses primarily using the qubit fre-
quency generally stay below 5 qubit levels and
25 cavity levels.

CNOT (pulse 10; T = 1000 ns, F = 0.990)
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Population dynamics for |Ψ(t = 0)〉 = |10〉
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Population dynamics for |Ψ(t = 0)〉 = |11〉

Note: integr. qubit level pop. for level |ij〉: ∑n |〈Ψ(t) | ij〉 ⊗ |n〉|2
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Optimized Pulse Spectrum

CPHASE (pulse 4; T = 1000 ns, F = 0.976)
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Population dynamics for |Ψ(t = 0)〉 = |00〉
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Population dynamics for |Ψ(t = 0)〉 = |10〉
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Yet unexplained observations on spectra:

•Optimized CNOT tends to excite qubits sym-
metrically, whereas CPHASE excites asymmet-
rically
• Pulses contain high frequency components. These

become extremely pronounced on pulses obtained
for either short pulse duration or from guess
pulses centered around the cavity frequency.

5 Conclusions & Outlook
• The optimization of a CPHASE and CNOT gate for the transmon system illustrates the extremely

rich dynamics that the Hamiltonian Eq. (1) provides. Different two-quantum gates can be imple-
mented.
• Pulses may populate a significant number of higher qubit and cavity states, justifying use of the full

Hamiltonian in lieu of an effective two-qubit description. Optimizing from appropriate guess pulses,
the number of qubit and cavity levels can be kept reasonably low (e.g. 4 or 5 qubit levels, 20 cavity
levels)
• Spectral components of optimized pulses must be better understood. Pulse peak amplitudes are still

undesirably large. Finding pulses pulses with ε(t) < 50 MHz may be achieved by adding a pulse
intensity penalty to the functional Eq. (2)
•With the experience of the Hilbert space optimization, optimize in Liouville space, with decoherence.

This can be done efficiently using the approach presented in section 3. The choice of fidelity may
have a significant effect on the optimization success and should be explored systematically.
•Ultimately: Use the local invariants functional [6] in Liouville space to optimize for the two-qubit

gate least susceptible to decoherence.
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