Introduction to the GRAPE Algorithm

Michael Goerz

June 8, 2010

Michael Goerz Introduction to the GRAPE Algorithm

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Available online at www.sciencedirect.com

Journal of Magnetic Resonance 172 (2005) 296-305

JMR Journal of Magnetic Resonance

www.elsevier.com/locate/jmr

Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms

Navin Khaneja^{a,*}, Timo Reiss^b, Cindie Kehlet^b, Thomas Schulte-Herbrüggen^b, Steffen J. Glaser^{b,*}

> ^a Division of Applied Sciences, Harvard University, Cambridge, MA 02138, USA ^b Department of Chemistry, Technische Universität München, 85747 Garching, Germany

> > Received 27 June 2004; revised 23 October 2004 Available online 2 December 2005

Acronym

GRAPE: Gradient Ascent Pulse Engineering

Fig. 1. Schematic representation of a control amplitude $u_k(t)$, consisting of N steps of duration $\Delta t = T/N$. During each step J, the control amplitude $u_k(j)$ is constant. The vertical arrows represent gradients $\delta \Phi_{b_k} \delta u_k(j)$, indicating how each amplitude $u_k(j)$ should be modified in the next iteration to improve the performance function Φ_{b_k}

at time index j: go in direction of gradient

Pulse Update

$$u_k(j) \longrightarrow u_k(j) + \epsilon \frac{\partial \Phi_0}{\partial u_k(j)}$$

Density Matrix

$$|\Psi\rangle \longrightarrow \rho = |\Psi\rangle\!\langle\Psi|$$

Liouville-von Neumann Equation

$$\dot{\rho}(t) = -i \left[H, \rho(t)\right]_{-} = -i \left[\left(H_0 + \sum_{k=1}^m u_k(t)H_k\right), \rho\right]_{-}$$

Time Propagation

$$U_{j} = \exp\left\{-i\Delta t \left(H_{0} + \sum_{k=1}^{m} u_{k}(j)H_{k}\right)\right\}$$
$$\rho(T) = U_{N} \dots U_{1} \rho(0) U_{1}^{\dagger} \dots U_{N}^{\dagger}$$
$$= |\Psi(T)\rangle\langle\Psi(T)| \quad \text{with} \quad \Psi(T) = U_{n} \dots U_{1}\Psi(0)$$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Fidelity in Liouville space is defined in analogy to fidelity in Hilbert space: as the overlap between the propagated state with the optimal state.

Fidelity

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

Fidelity in Liouville space is defined in analogy to fidelity in Hilbert space: as the overlap between the propagated state with the optimal state.

Fidelity

$$egin{aligned} \Phi_0 &= \langle C |
ho(\mathcal{T})
angle \equiv {
m tr} \left(\mathcal{C}^\dagger
ho(\mathcal{T})
ight) \ \mathcal{C} &= \mathcal{O} \left| \Psi(0)
angle \Psi(0)
ight| \mathcal{O}^\dagger \qquad
ho(\mathcal{T}) = U \left| \Psi(0)
angle \! \left| \Psi(0)
ight| \! \left| \mathcal{U}(0)
ight| U \end{aligned}$$

Equivalence to "normal" fidelity

$$\begin{aligned} \operatorname{tr}\left(C^{\dagger}\rho(T)\right) &= \sum_{n} \left\langle n \left| \mathcal{O} \right| \Psi(0) \right\rangle \left\langle \Psi(0) \left| \mathcal{O}^{\dagger} \mathcal{U} \right| \Psi(0) \right\rangle \left\langle \Psi(0) \left| \mathcal{U}^{\dagger} \right| n \right\rangle \\ &= \left\langle \Psi(0) \left| \mathcal{U}^{\dagger} \sum \right| n \right\rangle \left\langle n \left| \mathcal{O} \right| \Psi(0) \right\rangle \left\langle \Psi(0) \left| \mathcal{O}^{\dagger} \mathcal{U} \right| \Psi(0) \right\rangle \\ &= \left\langle \Psi(0) \left| \mathcal{U}^{\dagger} \mathcal{O} \right| \Psi(0) \right\rangle \left\langle \Psi(0) \left| \mathcal{O}^{\dagger} \mathcal{U} \right| \Psi(0) \right\rangle \\ &= \left| \left\langle \Psi(0) \left| \mathcal{O}^{\dagger} \mathcal{U} \right| \Psi(0) \right\rangle \right|^{2} \end{aligned}$$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

A trace is invariant under cyclic permutation of its factors!

Fidelity at T

$$\begin{split} \Phi_0 &= \langle C | \rho(T) \rangle = \left\langle C | U_N \dots U_1 \rho(0) U_1^{\dagger} \dots U_N^{\dagger} \right\rangle \\ &= \left\langle U_{j+1}^{\dagger} \dots U_N^{\dagger} C U_N \dots U_{j+1} | U_j \dots U_1 \rho(0) U_1^{\dagger} \dots U_j^{\dagger} \right\rangle \end{split}$$

Propagated States \rightarrow Fidelity at t_j

 $\lambda_j \equiv U_{j+1}^{\dagger} \dots U_N^{\dagger} C U_N \dots U_{j+1}$ bw. propagated optimal state $\rho_j \equiv U_j \dots U_1 \rho(0) U_1^{\dagger} \dots U_j^{\dagger}$ fw. propagated initial state $\Phi_0 = \langle C | \rho(T) \rangle = \langle \lambda_j | \rho_j \rangle$

Note: all propagations with guess pulse!

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

Pulse Update

$$u_k(j) \longrightarrow u_k(j) + \epsilon \frac{\partial \Phi_0}{\partial u_k(j)}$$

Two steps:

- For a variation $\delta u_k(j)$, calculate δU_j
- Use δU_j to calculate $\frac{\partial \Phi_0}{\partial u_k(j)}$

Calculations are not completely trivial.

Solution:

Gradient

$$\frac{\partial \Phi_0}{\partial u_k(j)} = -\left\langle \lambda_j | i \Delta t [H_k, \rho_j]_- \right\rangle$$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

We need to calculate $\frac{\partial \Phi_0}{\partial u_k(j)}$

Pulse Update

$$u_k(j) \longrightarrow u_k(j) + \epsilon \frac{\partial \Phi_0}{\partial u_k(j)}; \qquad \frac{\partial \Phi_0}{\partial u_k(j)} = -\langle \lambda_j | i \Delta t [H_k, \rho_j]_- \rangle$$

Guess initial controls $u_k(j)$ Update pulse according to gradient: Forward propagation of $\rho(0)$: calculate and store all $\rho_j = U_j \dots U_1 \rho(0) U_1^{\dagger} \dots U_j^{\dagger}$ for $j \in [1, N]$ Backward propagation of C: calculate and store all $\lambda_j = U_{j+1}^{\dagger} \dots U_N^{\dagger} C U_N \dots U_{j+1}$ for $j \in [1, N]$ Evaluate $\frac{\partial \Phi_0}{\partial u_k(j)}$ and update the $m \times N$ control amplitudes $u_k(j)$ Done if fidelity converges

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Non-Hermitian Operators

$$\begin{split} \Phi_{1} &= \Re[\Phi_{0}]; \quad \frac{\partial \Phi_{1}}{\partial u_{k}(j)} = -\left\langle \lambda_{j}^{x} | i \Delta t[H_{k}, \rho_{j}^{x} \right\rangle - \left\langle \lambda_{j}^{y} | i \Delta t[H_{k}, \rho_{j}^{y} \right\rangle \\ \Phi_{2} &= |\Phi_{0}|^{2}; \quad \frac{\partial \Phi_{2}}{\partial u_{k}(j)} = -2\Re\left\{ \left\langle \lambda_{j} | i \Delta t[H_{k}, \rho_{j} \right\rangle \left\langle \rho_{N}^{y} | C \right\rangle \right\} \end{split}$$

Unitary Transformations

$$\begin{split} \Phi_{3} &= \Re \left\langle U_{F} | U(T) \right\rangle = \Re \left\langle U_{j+1}^{\dagger} \dots U_{N}^{\dagger} U_{F} | U_{j} \dots U_{1} \right\rangle = \Re \left\langle P_{j} | X_{j} \right\rangle \\ &\frac{\partial \Phi_{3}}{\partial u_{k}(j)} = -\Re \left\langle P_{j} | i \Delta t H_{k} X_{j} \right\rangle \\ \Phi_{4} &= \left| \left\langle U_{F} | U(T) \right\rangle \right|^{2} = \left\langle P_{j} | X_{j} \right\rangle \left\langle X_{j} | P_{j} \right\rangle \\ &\frac{\partial \Phi_{4}}{\partial u_{k}(j)} = -2\Re \left\{ \left\langle P_{j} | i \Delta t H_{k} X_{j} \right\rangle \left\langle X_{j} | P_{j} \right\rangle \right\} \end{split}$$

Also works with Lindbladt-Operators. Additional energy constraints are possible.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Fig. 1. Schematic representation of a control amplitude $u_k(t)$, consisting of N steps of duration $\Delta t = T/N$. During each step j, the control amplitude $u_k(j)$ is constant. The vertical arrows represent gradients $\delta \vartheta_0/\delta u_k(j)$, indicating how each amplitude $u_k(j)$ should be modified in the next iteration to improve the performance function ϑ_0 .

- GRAPE also needs forward- and backward-propagation, but only with old pulse. Propagated states also need to be stored.
- Pulse update at point j in the current iteration does not depend on other updated pulse values (non-sequential update)
- All updates in GRAPE can in principle be calculated in parallel.
- Convergence tends to be pretty lousy (so I'm told)
- What about the choice of e?

Thank You!

・ロト・日本・日本・日本・日本・日本・日本