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Abstract
Optimal control theory (OCT) represents a powerful tool for the implementation of quantum informa-
tion tasks. For open systems, OCT is expected to find control solutions that are robust to decoherence.
However, optimization of complex systems poses numerical challenges. Already in closed systems, the
dimension of the Hilbert space scales exponentially with the size of the system, i.e., d = 2n for n qubits.
The dimension of Liouville space is d2, and according to common wisdom, optimization of a unitary
operation requires propagation of a complete basis. Here, we show that for the optimization of unitary
operations, it is not necessary to consider a complete set of basis states. Instead, a reduced set of states
is sufficient. The minimal set consists of 3 states only.

To illustrate the efficient optimization of a unitary for an open quantum system, we consider the
example of a Rydberg CPHASE gate with neutral trapped atoms [1]. The system Hamiltonian allows
for diagonal gates only. We model the system dynamics with a master equation in Lindblad form and
use optimal control theory, specifically Krotov’s method [2], to find control pulses that implement the
desired operation, and discuss the minimum number of states that needs to be accounted for in the
optimization. For two transmon qubits coupled via shared cavity modes [3], also non-diagonal gates
are possible. We give an outlook on the optimization of a CNOT gate on this system

1 Rydberg gate: two trapped neutral atoms
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no coupling between |0〉, |1〉 ⇒ only diagonal gates

Û = diag(eiφ00, eiφ01, eiφ10, eiφ11)

Two-qubit Hamiltonian: Ĥ2q = Ĥ1q ⊗ 1 + 1⊗ Ĥ1q−U |rr〉〈rr|
dipole-dipole interaction when both atoms in Rydberg state

Decoherence: dρ̂
dt = −i[Ĥ, ρ̂] + LD(ρ̂); LD(ρ̂) = γ
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2 Gate optimization in open quantum systems
• H : Standard method: Krotov
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≡ Ô |φk〉

• L : Lift e.g. JT = 1− 1
d

∑d
i=1 Re

〈
Ψi
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ρ̂j span entire Liouville space (d2 = 16)

Decoherence is taken into account explicitly in the optimization through the equations of motion!
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3 Reduced set of density matrices
Claim: We only need to propagate 3 matrices, not 16

No need to characterize the full dynamical map!

1© Do we stay in the logical subspace?

2© Are we unitary, and if yes, did we implement the right gate?

for two-qubit gate: ρ̂1 = 1
20


8 0 0 0
0 6 0 0
0 0 4 0
0 0 0 2

, ρ̂2 = 1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, ρ̂3 = 1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


• (ρ̂1)ij =

2(d−i+1)
d(d+1)

δij: check that gate is diagonal in same basis as Ô

Just looking at D(ρ̂1) = Ûρ̂1Û
†

cannot distinguish any two diagonal gates of the form
Û = diag(eiφ00, eiφ01, eiφ10, eiφ11)

• (ρ̂2)ij = 1
d: “totally rotated state”, check relative phases between maps of logical eigenstates

Concept of total rotation: ρ̂ =
∑
i λiP̂i; ρ̂′ = P̂TR with ∀i : P̂TRP̂i 6= 0

• (ρ̂3)ij = 1
dδij: check CPTP map on logical subspace

ρ̂1, ρ̂2, ρ̂3 together ensure that map is unitary on logical subspace.

4 Rydberg CPHASE optimization results

Without dissipation

• only diagonal gates possible
⇒ ρ̂1 can be dropped

• ρ̂2, ρ̂3 can be weighted according to
physical interpretation (implementing
correct gate, staying in subspace)

• exponential convergence; weighted two
states as good as full basis

• computational saving even for slower
convergence

With dissipation

0 20 40 60
time (ns)

0

0.5

1

fie
ld

 ( 
re

l. 
un

its
 )

ΩR(t)
guess
ΩB(t)

0

0.5

1

po
pu

la
tio

n 00
r0
0r
rr
int

population dynamics / optimized pulses
show double STIRAP-like behavior

0 10 20 30 40 50 60 70 80 90
OCT iteration

10-5

10-4

10-3

10-2

10-1

100

ga
te

 e
rr

or

full basis
3 states
2 states
2 states (weighted)

no dissipation, T = 50 ns

0 200 400 600 800 1000
OCT iteration

10-2

10-1

ga
te

 e
rr

or

full basis
3 states
2 states
2 states (weighted)

τ = 25 ns, T = 75 ns

5 Outlook: transmon two-qubit gate

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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superconducting qubits inside a transmission line
resonator, Fig. from [4]

Parameters:

• ωc = 8.3 GHz

• ω1 = 6.5 GHz

• ω2 = 6.6 GHz

• α1 = α2 = 150 MHz

• ω(1,2)
i = iω1,2 − (i2 − i)α1,2

• J = 5 MHz, Jij =
√
ijJ

• g1 = g2 = 100 MHz, g
(1,2)
i =

√
ig1,2

• geff |ε(t)| < 50 MHz (if possible)
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Schrieffer-Wolff transformation allows approximate diagonalization of Hamiltonian
⇒ reduced Hamiltonian after integrating out cavity
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+ (2)
j + Ĉ
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Preliminary Optimization Result (CNOT): F = 99%
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5 Conclusions & Next Steps
•A set of three density matrices is sufficient for gate optimization (independent of dimension of Hilbert

space!): Since the goal is only to check whether a given unitary gate has been implemented, one
does not need to span a full basis of the Hilbert space.
• Further reduction possible in special cases: If the Hamiltonian can only generate diagonal gates, ρ̂1

is automatically mapped correctly.
• States can be weighted according to physical interpretation. One may even change the relative

weights between ρ̂1, ρ̂2, ρ̂3 dynamically.
• Success of optimization with reduced set of density matrices was demonstrated for the example of

a CPHASE Rydberg gate. Optimal solutions match known STIRAP-like behavior in which the
population in the decaying intermediary state is suppressed.
• It can be proven that ρ̂1, ρ̂2, ρ̂3 are sufficient to distinguish two unitaries in the logical subspace [5],

but good convergence must still be shown numerically for Hamiltonian allowing non-diagonal gates.
• Superconducting qubits (transmons) provide rich dynamics and allow the realization of non-diagonal

gates. They provide a suitable further testbed for the optimization with a reduced set of states.
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