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Outlook

• find pulses for better fidelities and experimentally more feasible parameters

• accumulate target phase by repeating a pulse sequence

• formulate OCT functionals directly in terms of φ00: loosen constraint on on-qubit-phase

• apply the method to Rb system: better known system, easy to work with for experimentalists;
but: more complicated, qubit encoding in hyperfine levels.
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sequence of 100 fs Rabi guess pulses (excerpt: total pulse time 10 ps)

F = 0.28 φ00 = 1.81π
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F = 0.29 φ00 = 1.81π
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Optimized Pulses

System Parameters and Search Strategies

• trap distance d: only large values are experimentally feasible. Current calculations are at
d = 10 nm, ultimate goal is d = 75 nm [4]

• pulse time: larger values for d require more time for the pulse. For d = 10 nm, T = 10 ps

• pulse intensity: more population transfer

• multi-photon transitions: use interference to make pulse “dark” for non-interacting system

• increase α: allow more changes to intensity

• use informed guess pulses, e.g. based on Franck-Condon factors.

• optimize both the interacting and the non-interacting system in parallel with a single pulse
(two state-to-state transitions)

• target for CNOT is χ00
!

= π; φ0
!

= 0. This implies that the true two-qubit-phase fulfills the
target condition.

• condition is too strict: only χ00 − φ0 = π is required

Ĥ1q =

(
E0 µ̂ ε(t)
µ̂ ε(t) Eaux

)

χ00(r, t) = φ00(r, t) + φ0(t)

χ00 : phase from system evolution

φ00 : true interaction phase
!

= π (CNOT)

φ0 : non-interacting phase

φ00 χ00 φ0

One-Qubit and Two-Qubit Phases

• driving the interacting system always affects the non-interacting system as well; but we want
a true two-qubit operation.

Finding an Optimal Pulse
Starting from a guess pulse, an optimal pulse implementing the target operation Ô can be found
by minimization of the target functional J [2, 3]:

J = −Fre +

T∫
0

α

S(t)
(∆ε(t))2 ; Fre =

1

N
Re

 N∑
l=1

〈
l
∣∣∣Ô†Û(T ; 0; ε)

∣∣∣ l〉
 ; OCT⇒ ∆ε

• |l〉 are the N initial states of the system

• Ô |l〉 are target states, Û(T ; 0; ε) |l〉 are states propagated from t = 0 to t = T with the pulse
ε(t).

• phase sensitive fidelity Fre is calculated from the overlap between the target states and the
propagated states

• second part of J is constraint of the time evolution: field changes should converge within the
pulse time; pulse shape S(t) enforces smooth switching on/off. α is a multiplier strengthening
the constraint.

The Optimal Control Theory (OCT) algorithm finds a modification ∆ε(t) to the guess pulse ε(t)
that is guaranteed to decrease J .

• single qubits: 1S0 state is |0〉, 3P1 state is |1〉
• two atoms in harmonic trap potential; relative coordinates, integrate out COM

• For r <∞: Born-Oppenheimer molecular potentials

• two qubit basis (electronic surfaces): |00〉, |01〉, |10〉, |11〉. X1Σ+
g surface is |00〉

• laser pulse drives transition between |00〉 and B1Σ+
u |aux〉 surface

Ĥ2q =

(
T̂ + V̂00(r) + V̂trap(r, d) µ̂21(r) ε(t)

µ̂12(r) ε(t) T̂ + V̂aux(r) + V̂trap(r, d)

)

• goal: change phase of only the |00〉 eigenstate.

Ψrel(r) ≈
(µω0

4π~

)1/4∑
±
e
−mω0

2~ (d±r)2
trap groundstate

Ψ±(x, t) −→ Ψ±(x)eiφ±(x,t) time evolution in absolute coordinate system

Ψ00(r, t) = Ψrel(r)⊗ |0〉 |0〉
↓

Ψ′00(r, t) = e−i(φ+(r,t)+φ−(r,t)) Ψrel(r)⊗ |0〉 |0〉
= e−iχ00 Ψrel(r)⊗ |00〉
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Qubit Encoding and Gate for Ca2 System

Universal Quantum Computing
The set of all one-qubit gates plus the two-qubit CNOT is universal. More generally, the CNOT
is equivalent to the controlled phasegate, combined with two Hadamard gates.

Ô(φ) =


eiφ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 |0〉 •

|1〉 H O(φ) H

CNOT → Ô(π)√
SWAP→ Ô(π/2)

Introduction
In recent years, a number of physical implementations of Quantum Computing have been exam-
ined, such as cavity QED, trapped ions, NMR, or SQUID-systems. We consider an alternative
model based on neutral ultracold atoms in an optical lattice [1]. The qubits can be encoded in
the electronic or hyperfine levels of the atoms. An appropriately shaped laser pulse couples to the
electronic states and drives arbitrary quantum-computational operations. Single qubit operations
are easy to achieve. We have implemented a numerical scheme to find laser pulses that perform a
two-qubit phasegate. Our goal consists in calculating short, high fidelity pulses for the realization
of this target gate.
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