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Abstract
We consider two different physical systems to illustrate an efficient optimization of quantum gates under
dissipative evolution, requiring the propagation of only three states, irrespective of the dimension of the
Hilbert space. [1] In the first example, two trapped neutral atoms are excited to a Rydberg state, via
a decaying intermediary state [2]. The interaction between both atoms in the |rr〉 state allows for the
realization of a diagonal CPHASE gate. Optimal control theory finds a solution that uses a STIRAP-
like mechanism to suppress population in the decaying intermediary state, while implementing the
desired gate. As a second example, we consider two superconducting transmon qubits [3] coupled via a
shared transmission line resonator [4]. The Hamiltonian in this case also allows for non-diagonal gates,
and we optimize for a

√
iSWAP, taking into account energy relaxation and dephasing of the qubits [5].

The system is driven at a frequency close to the center between both qubits, and the optimized gate
exploits a near-resonance of the |0〉 → |1〉 transition on the left qubit and the |1〉 → |2〉 transition on
the right qubit. For both examples, the gate fidelity reached by optimization is only limited by the
decoherence.

1 Efficient OCT of a Unitary in Liouville Space
No need to characterize the full dynamical map!
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ρ̂1 : Are we diagonal in the correct basis?

ρ̂2 : totally rotated state→ relative phases

}
check & distinguish unitaries

ρ̂3 : Do we have a (unital) dynamical map on the logical subspace?

Optimization Functional:
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• JT becomes 0 if (and only if) D implements target gate Ô

• different states can have different weights wi

Control equations: for Krotov method [7], with εref = εold
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Dissipation in examples is modeled as master equation in Lindblad form, with
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Âρ̂ + ρ̂Â
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Note: method does not depend on equation of motion or model for dissipation!

Measure of merit: average gate fidelity
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ρ̂1 and ρ̂3 are mixed states ⇒ possibly faster convergence by using set of pure states

• d + 1 states: expand ρ̂1, keep ρ̂2, expansion of ρ̂1 makes ρ̂3 obsolete

For two-qubit gate: ρ̂1→ {|00〉〈00| , |01〉〈01| , |10〉〈10| , |11〉〈11|}
• 2d states: expand ρ̂1, plus pure states for mutually unbiased basis (MUB)

For two-qubit gate:

– ρ̂1→ {|00〉〈00| , |01〉〈01| , |10〉〈10| , |11〉〈11|}
– MUB: |ϕ̃1〉 = (|00〉 + |01〉 + |10〉 + |11〉) /2 |ϕ̃2〉 = (|00〉 − |01〉 + |10〉 − |11〉) /2

|ϕ̃3〉 = (|00〉 + |01〉 − |10〉 − |11〉) /2 |ϕ̃4〉 = (|00〉 − |01〉 − |10〉 + |11〉) /2

2 Optimization of a Rydberg Gate (CPHASE)
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Only allows for diagonal gates!

In the RWA:
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Two-qubit Hamiltonian:

Ĥ2q = Ĥ1q ⊗ 1 + 1⊗ Ĥ1q−U |rr〉〈rr|

Optimization Results
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from Ref. [6]

3 Optimization of a Transmon Gate (
√
iSWAP)

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −
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, !2.2"

where Eelj
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maxcos!%& j /&0" is the Josephson coupling energy. Here,
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capacitance. ngj
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/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
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!aj

2
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gj!# j − cj$zj
+ sj$xj
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where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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qubit frequency ω1 4.3796 GHz
qubit frequency ω2 4.6137 GHz
drive frequency ωd 4.4985 GHz
anharmonicity δ1 -239.3 MHz
anharmonicity δ2 -242.8 MHz
effective qubit-qubit coupling J -2.3 MHz
qubit 1 decay time T1 38.0 µs
qubit 2 decay time T1 32.0 µs
qubit 1 dephasing time T ∗2 29.5 µs
qubit 2 dephasing time T ∗2 16.0 µs

Cavity mediates static interaction between the qubits, driven excitation of each qubit

Effective Hamiltonian (cavity integrated out):
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Optimization Results
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4 Conclusions
• A set of three states is sufficient for gate optimization, independent of dimension of Hilbert space
• Further reduction possible for restricted dynamics, e.g. Hamiltonians only allowing diagonal gates
• Choosing proper weights for the optimization states improves convergence
• For two-qubit gates, savings in both CPU time and memory by a factor of 8; even more savings for

larger Hilbert spaces
⇒Gate optimization in open quantum systems with large Hilbert spaces have become significantly

more feasible
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