Efficient Optimal Control for a Unitary Operation under Dissipative Evolution

Michael Goerz, Daniel Reich, Christiane P. Koch Universität Kassel

March 20, 2014

DPG Frühjahrstagung 2014, Berlin Session Q 43

Michael Goerz • Uni Kassel • Efficient OCT for a Unitary under Dissipation

Control Problem

Find a time-dependent control (e.g. laser pulse) that steers the system towards some desired goal (e.g. quantum gate)

Control Problem

Find a time-dependent control (e.g. laser pulse) that steers the system towards some desired goal (e.g. quantum gate)

- define optimization functional
- for a guess pulse, solve the equation of motion numerically
- modify control pulse to improve value of optimization functional

Control Problem

Find a time-dependent control (e.g. laser pulse) that steers the system towards some desired goal (e.g. quantum gate)

- define optimization functional
- for a guess pulse, solve the equation of motion numerically
- modify control pulse to improve value of optimization functional

Control Problem

Find a time-dependent control (e.g. laser pulse) that steers the system towards some desired goal (e.g. quantum gate)

- define optimization functional
- for a guess pulse, solve the equation of motion numerically
- modify control pulse to improve value of optimization functional

 "optimal": not limited to simple intuitive schemes, operate at the quantum speed limit

Gate optimization

$$CPHASE = diag(-1, 1, 1, 1)$$
$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Gate optimization

$$\begin{aligned} \mathsf{CPHASE} &= \mathsf{diag}(-1, 1, 1, 1) & \mathsf{Goal: Maximize} \\ \mathsf{CNOT} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} & \mathsf{F} &= \frac{1}{d} \sum_{i=1}^{d} \mathfrak{Re} \Big\langle \Psi_i \Big| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{U}}(T, 0, \epsilon) \Big| \Psi_i \Big\rangle \\ \mathsf{Two-qubit gates: } d = 4 \end{aligned}$$

Gate optimization

$$CPHASE = diag(-1, 1, 1, 1) \qquad Goal: Maximize$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad F = \frac{1}{d} \sum_{i=1}^{d} \mathfrak{Re} \left\langle \Psi_{i} \middle| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{U}}(T, 0, \epsilon) \middle| \Psi_{i} \right\rangle$$

$$Two-qubit gates: d = 4$$

$$\Delta \epsilon(t) \propto \left\langle \chi(t) \middle| \partial_{\epsilon} \hat{\mathbf{H}} \middle| \Psi(t) \right\rangle$$

$$|11\rangle \bullet \bullet \bullet \circ \hat{\mathbf{O}} |11\rangle$$

In the real world: decoherence

$$\hat{\rho}(T) = \mathcal{D}(\hat{\rho}(0));$$
 for example $\frac{\partial \hat{\rho}}{\partial t} = \frac{i}{\hbar} [\hat{\mathbf{H}}, \hat{\rho}] + \mathcal{L}_{D}(\hat{\rho})$

$$\hat{\rho}(T) = \mathcal{D}(\hat{\rho}(0)); \quad \text{for example } \frac{\partial \hat{\rho}}{\partial t} = \frac{i}{\hbar} [\hat{\mathbf{H}}, \hat{\rho}] + \mathcal{L}_{D}(\hat{\rho})$$
Lift $F = \frac{1}{d} \sum_{i=1}^{d} \mathfrak{Re} \left\langle \Psi_{i} \right| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} \left| \Psi_{i} \right\rangle$ to Liouville space.

aa

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006), Ohtsuki, New J. Phys. 12, 045002 (2010) Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011),

$$\Rightarrow F = \frac{1}{d^2} \sum_{j=1}^{d^2} \operatorname{tr} \left[\hat{\mathbf{0}} \hat{\rho}_j(0) \hat{\mathbf{0}}^{\dagger} \hat{\rho}_j(T) \right]$$

$$\hat{\rho}(T) = \mathcal{D}(\hat{\rho}(0)); \quad \text{for example } \frac{\partial \rho}{\partial t} = \frac{1}{\hbar} [\hat{\mathbf{H}}, \hat{\rho}] + \mathcal{L}_{D}(\hat{\rho})$$
Lift $F = \frac{1}{d} \sum_{i=1}^{d} \mathfrak{Re} \left\langle \Psi_{i} \middle| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} \middle| \Psi_{i} \right\rangle$ to Liouville space.

22

.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006), Ohtsuki, New J. Phys. 12, 045002 (2010) Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011),

$$\Rightarrow F = \frac{1}{d^2} \sum_{j=1}^{d^2} \operatorname{tr} \left[\hat{\mathbf{O}} \hat{\rho}_j(0) \hat{\mathbf{O}}^{\dagger} \hat{\rho}_j(T) \right]$$

$$\hat{\rho}(T) = \mathcal{D}(\hat{\rho}(0)); \quad \text{for example } \frac{\partial \rho}{\partial t} = \frac{1}{\hbar} [\hat{\mathbf{H}}, \hat{\rho}] + \mathcal{L}_{D}(\hat{\rho})$$
Lift $F = \frac{1}{d} \sum_{i=1}^{d} \mathfrak{Re} \left\langle \Psi_{i} \middle| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} \middle| \Psi_{i} \right\rangle$ to Liouville space.

22

.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006), Ohtsuki, New J. Phys. 12, 045002 (2010) Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011),

$$\Rightarrow F = \frac{1}{d^2} \sum_{j=1}^{d^2} \operatorname{tr} \left[\hat{\mathbf{0}} \hat{\rho}_j(0) \hat{\mathbf{0}}^{\dagger} \hat{\rho}_j(T) \right]$$

Claim

We only need to propagate **three** matrices (independent of d), instead of d^2 .

1) Do we stay in the logical subspace?

1) Do we stay in the logical subspace?

$$\hat{
ho}_3 = rac{1}{4} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

1) Do we stay in the logical subspace?

② Are we unitary, and if yes, did we implement the right gate?

$$\hat{
ho}_3 = rac{1}{4} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

1) Do we stay in the logical subspace?

2 Are we unitary, and if yes, did we implement the right gate?

$$\hat{\rho}_1 = \frac{1}{20} \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \qquad \hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

1) Do we stay in the logical subspace?

② Are we unitary, and if yes, did we implement the right gate?

$$\hat{\rho}_1 = \frac{1}{20} \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \qquad \hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

E.g.
$$\hat{\mathbf{O}} = \text{diag}(-1, 1, 1, 1);$$

For $\hat{\mathbf{U}} = \text{diag}(e^{i\phi_{00}}, e^{i\phi_{01}}, e^{i\phi_{11}}, e^{i\phi_{11}})$
using just $\hat{\rho}_1$ will not distinguish $\hat{\mathbf{U}}$ from $\hat{\mathbf{O}}$. $(\hat{\mathbf{U}}\hat{\rho}_1\hat{\mathbf{U}}^{\dagger} = \hat{\mathbf{O}}\hat{\rho}_1\hat{\mathbf{O}}^{\dagger} = \hat{\rho}_1)$

1) Do we stay in the logical subspace?

2 Are we unitary, and if yes, did we implement the right gate?

E.g.
$$\hat{\mathbf{O}} = \text{diag}(-1, 1, 1, 1);$$

For $\hat{\mathbf{U}} = \text{diag}(e^{i\phi_{00}}, e^{i\phi_{01}}, e^{i\phi_{10}}, e^{i\phi_{11}})$
using just $\hat{\rho}_1$ will not distinguish $\hat{\mathbf{U}}$ from $\hat{\mathbf{O}}$. $(\hat{\mathbf{U}}\hat{\rho}_1\hat{\mathbf{U}}^{\dagger} = \hat{\mathbf{O}}\hat{\rho}_1\hat{\mathbf{O}}^{\dagger} = \hat{\rho}_1)$

Optimization States

Functional

$$J_{T} = 1 - \sum_{j=1}^{3} \frac{w_{j}}{\operatorname{tr}[\hat{\rho}_{j}^{2}(0)]} \operatorname{tr}\left[\hat{\mathbf{O}}\hat{\rho}_{j}\hat{\mathbf{O}}^{\dagger}\mathcal{D}[\hat{\rho}_{j}]\right]$$

• Allow for different weights $(\sum w_j = 1)$

Michael Goerz • Uni Kassel • Efficient OCT for a Unitary under Dissipation

Example 1

Optimization of a Diagonal Gate using Rydberg Atoms

Michael Goerz • Uni Kassel • Efficient OCT for a Unitary under Dissipation

Two-qubit Hamiltonian

$$\mathbf{\hat{H}}_{2q} = \mathbf{\hat{H}}_{1q} \otimes \mathbb{1} + \mathbb{1} \otimes \mathbf{\hat{H}}_{1q} - \mathbf{U} \ket{rr} \langle rr |$$

Dipole-dipole interaction when both atoms in Rydberg state.

Only diagonal gates!

no coupling between |0
angle, |1
angle $\hat{f U}={
m diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$

only diagonal gates are possible

no coupling between |0
angle, |1
angle $\hat{f U}={\sf diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$

only diagonal gates are possible

no coupling between |0
angle, |1
angle $\hat{f U}={
m diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$

only diagonal gates are possible

Optimization of a Rydberg gate - asymptotic behavior

Example 2

Optimization of a non-diagonal gate using transmon qubits

Michael Goerz • Uni Kassel • Efficient OCT for a Unitary under Dissipation

Two coupled transmon qubits

Cavity mediates

driven excitation of qubit

 interaction between left and right qubit

Two coupled transmon qubits

Cavity mediates

- driven excitation of qubit
- interaction between left and right qubit

Many gates possible, e.g. \sqrt{iSWAP} :

$$\hat{\mathbf{O}} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & rac{1}{\sqrt{2}} & rac{i}{\sqrt{2}} & 0 \ 0 & rac{i}{\sqrt{2}} & rac{1}{\sqrt{2}} & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Optimization of a transmon gate

Optimization of a transmon gate

Optimization of a transmon gate

Optimization of a transmon gate - CPU time

Optimization of a transmon gate - CPU time

Using pure states only

Using pure states only

optimization of a transmon gate - CPU time

optimization of a transmon gate - CPU time

Conclusion

- A set of three density matrices is sufficient for gate optimization: (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases
- Further reduction possible for restricted systems
- States can (should!) be weighted according to physical interpretation

Conclusion

- A set of three density matrices is sufficient for gate optimization: (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases
- Further reduction possible for restricted systems
- States can (should!) be weighted according to physical interpretation

 \Rightarrow Gate optimization in open quantum systems with large Hilbert spaces have become significantly more feasible.

Reference:

M. H. Goerz, D. M. Reich, C. P. Koch. arXiv:1312.0111. In press: New Journal of Physics (special issue)

Conclusion

- A set of three density matrices is sufficient for gate optimization: (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases
- Further reduction possible for restricted systems
- States can (should!) be weighted according to physical interpretation

 \Rightarrow Gate optimization in open quantum systems with large Hilbert spaces have become significantly more feasible.

Reference:

M. H. Goerz, D. M. Reich, C. P. Koch. arXiv:1312.0111. In press: New Journal of Physics (special issue)

Thank you

Optimized dynamics of the Rydberg gate

Michael Goerz • Uni Kassel • Efficient OCT for a Unitary under Dissipation

Two Coupled Transmon Qubits

J. Koch et al. PRA 76, 042319 (2007)

A. Blais et al. PRA 75, 032329 (2007)

Two Coupled Transmon Qubits

J. Koch et al. PRA 76, 042319 (2007)

A. Blais et al. PRA 75, 032329 (2007)

Full Hamiltonian

$$\begin{split} \hat{\mathbf{H}} &= \underbrace{\omega_{c} \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}}_{(1)} + \underbrace{\omega_{1} \hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{b}}_{1} + \omega_{2} \hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{b}}_{2}}_{(2)} - \underbrace{\frac{1}{2} (\alpha_{1} \hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{b}}_{1} \hat{\mathbf{b}}_{1} + \alpha_{2} \hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{b}}_{2} \hat{\mathbf{b}}_{2} \hat{\mathbf{b}}_{2})}_{(3)} + \\ &+ \underbrace{g_{1} (\hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_{1} \hat{\mathbf{a}}^{\dagger}) + g_{2} (\hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_{2} \hat{\mathbf{a}}^{\dagger})}_{(4)} + \underbrace{\epsilon^{*}(t) \hat{\mathbf{a}} + \epsilon(t) \hat{\mathbf{a}}^{\dagger}}_{(5)} \end{split}$$

Michael Goerz • Uni Kassel • Efficient OCT for a Unitary under Dissipation

Effective Hamiltonian

$$\begin{aligned} \hat{\mathbf{H}}_{\text{eff}} &= \sum_{q=1,2} \sum_{i=0}^{N_q-1} (\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + \sum_{q=1,2} \sum_{i=0}^{N_q-1} g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) \\ &+ \sum_{ij} J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + \hat{\mathbf{C}}_i^{+(1)} \hat{\mathbf{C}}_j^{-(2)}). \end{aligned}$$

Effective Hamiltonian

$$\begin{split} \hat{\mathbf{H}}_{\text{eff}} &= \sum_{q=1,2} \sum_{i=0}^{N_q-1} (\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + \sum_{q=1,2} \sum_{i=0}^{N_q-1} g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) \\ &+ \sum_{ij} J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + \hat{\mathbf{C}}_i^{+(1)} \hat{\mathbf{C}}_j^{-(2)}) \,. \end{split}$$

with

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity $lpha_2$	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 µs, 32.0 µs
qubit 1,2 dephasing time T_2^st	29.5 µs, 16.0 µs

Effective Hamiltonian

$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + c.c.) \right)$$

Master Equation

$$\mathcal{L}_{D}(\hat{\boldsymbol{\rho}}) = \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} iD\left[|i-1\rangle\langle i|_{q} \right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i}D\left[|i\rangle\langle i|_{q} \right] \hat{\boldsymbol{\rho}} \right),$$

with $D\left[\hat{\mathbf{A}} \right] \hat{\boldsymbol{\rho}} = \hat{\mathbf{A}}\hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger} - \frac{1}{2} \left(\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}}\hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}} \right)$

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity $lpha_2$	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 µs, 32.0 µs
qubit 1,2 dephasing time T_2^st	29.5 µs, 16.0 µs

■ Near resonance of α₁ with ω₁ − ω₂

Effective Hamiltonian

$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + c.c.) \right)$$

Master Equation

$$\mathcal{L}_{D}(\hat{\boldsymbol{\rho}}) = \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} iD\left[|i-1\rangle \langle i|_{q} \right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i}D\left[|i\rangle \langle i|_{q} \right] \hat{\boldsymbol{\rho}} \right) ,$$

with $D\left[\hat{\mathbf{A}} \right] \hat{\boldsymbol{\rho}} = \hat{\mathbf{A}} \hat{\boldsymbol{\rho}} \hat{\mathbf{A}}^{\dagger} - \frac{1}{2} \left(\hat{\mathbf{A}}^{\dagger} \hat{\mathbf{A}} \hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\rho}} \hat{\mathbf{A}}^{\dagger} \hat{\mathbf{A}} \right)$

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity $lpha_2$	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 µs, 32.0 µs
qubit 1,2 dephasing time T_2^st	29.5 µs, 16.0 µs

- Near resonance of α₁ with ω₁ − ω₂
- single frequency drive centered between two qubits

Effective Hamiltonian

$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + c.c.) \right)$$

Master Equation

$$\mathcal{L}_{D}(\hat{\boldsymbol{\rho}}) = \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} iD\left[|i-1\rangle \langle i|_{q} \right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i}D\left[|i\rangle \langle i|_{q} \right] \hat{\boldsymbol{\rho}} \right) ,$$

with $D\left[\hat{\mathbf{A}} \right] \hat{\boldsymbol{\rho}} = \hat{\mathbf{A}} \hat{\boldsymbol{\rho}} \hat{\mathbf{A}}^{\dagger} - \frac{1}{2} \left(\hat{\mathbf{A}}^{\dagger} \hat{\mathbf{A}} \hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\rho}} \hat{\mathbf{A}}^{\dagger} \hat{\mathbf{A}} \right)$

Transmon Optimized Pulse

Transmon Population Dynamics

 $\Psi(t=0)=\ket{01}$ $\Psi(t=0)=\ket{11}$