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Introduction: numerical optimal control

Control Problem

Find a time-dependent control (e.g. laser pulse) that steers the system
towards some desired goal (e.g. quantum gate)

define optimization functional

for a guess pulse, solve the equation of motion numerically

modify control pulse to improve value of optimization functional

OCT

iteration εold

∆ε

εnew

“optimal”: not limited to simple intuitive schemes,
operate at the quantum speed limit
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Gate optimization

CPHASE = diag(−1, 1, 1, 1)

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Goal: Maximize

F =
1

d

d∑

i=1

Re
〈

Ψi

∣∣∣Ô†Û(T , 0, ε)
∣∣∣Ψi

〉

Two-qubit gates: d = 4

|00〉 Ô |00〉

|01〉 Ô |01〉

|10〉 Ô |10〉

|11〉 Ô |11〉

εnew εold

t0 T

∆ε(t) ∝
〈
χ(t)

∣∣∣ ∂εĤ
∣∣∣Ψ(t)

〉

t
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|11〉 Ô |11〉

εnew εold

t0 T

∆ε(t) ∝
〈
χ(t)

∣∣∣ ∂εĤ
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OCT for open quantum systems

In the real world: decoherence
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OCT for open quantum systems
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ρ̂(T ) = D(ρ̂(0)); for example
∂ρ̂

∂t
=

i

~
[Ĥ, ρ̂] + LD(ρ̂)



OCT for open quantum systems

Michael Goerz • Uni Kassel • Efficient OCT for a Unitary under Dissipation 5 / 20

ρ̂(T ) = D(ρ̂(0)); for example
∂ρ̂

∂t
=

i

~
[Ĥ, ρ̂] + LD(ρ̂)

Lift F = 1
d

∑d
i=1 Re

〈
Ψi

∣∣∣ Ô†P̂Û(T , 0, ε)P̂
∣∣∣Ψi

〉
to Liouville space.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),
Ohtsuki, New J. Phys. 12, 045002 (2010)

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011),
. . .

⇒ F =
1

d2

d2∑

j=1

tr
[
Ôρ̂j(0)Ô

†
ρ̂j(T )

]
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∂ρ̂
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i

~
[Ĥ, ρ̂] + LD(ρ̂)

Lift F = 1
d

∑d
i=1 Re

〈
Ψi

∣∣∣ Ô†P̂Û(T , 0, ε)P̂
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〉
to Liouville space.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),
Ohtsuki, New J. Phys. 12, 045002 (2010)

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011),
. . .

⇒ F =
1

d2

d2∑

j=1

tr
[
Ôρ̂j(0)Ô

†
ρ̂j(T )

]

ρ̂1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ρ̂2 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ρ̂3 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , . . .

d2 matrices to propagate! (16 for two-qubit gate)
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~
[Ĥ, ρ̂] + LD(ρ̂)

Lift F = 1
d
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to Liouville space.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),
Ohtsuki, New J. Phys. 12, 045002 (2010)

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011),
. . .

⇒ F =
1

d2

d2∑

j=1

tr
[
Ôρ̂j(0)Ô

†
ρ̂j(T )

]

Claim

We only need to propagate three matrices (independent of d),
instead of d2.



A reduced set of density matrices
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No need to characterize the full dynamical map! – much less
information required to assess how well a desired unitary is implemented

ρ̂1 =
1

20




8 0 0 0
0 6 0 0
0 0 4 0
0 0 0 2


 , ρ̂2 =

1

4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , ρ̂3 =

1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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E.g. Ô = diag(−1, 1, 1, 1);
For Û = diag(e iφ00 , e iφ01 , e iφ10 , e iφ11 )

using just ρ̂1 will not distinguish Û from Ô. (Ûρ̂1Û
†

= Ôρ̂1Ô
†

= ρ̂1)
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Efficient gate optimization in Liouville space

Optimization States

ρ̂1 =
1

20




8 0 0 0
0 6 0 0
0 0 4 0
0 0 0 2


 , ρ̂2 =

1

4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , ρ̂3 =

1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




populations phases subspace

Functional

JT = 1−
3∑

j=1

wj

tr[ρ̂2
j (0)]

tr
[
Ôρ̂jÔ

†D[ρ̂j ]
]

Allow for different weights (
∑

wj = 1)

JT = 0 iff for all ρ̂j : D[ρ̂j ] ≡ target state

⇒ implemented unitary gate Ô.
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Example 1

Optimization of a Diagonal Gate
using Rydberg Atoms
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Two trapped neutral atoms

Single-qubit Hamiltonian

|0〉
|1〉

|i〉

|r〉

∆1

ΩR(t)τ = 25 ns

ΩB(t)

In the RWA:

Ĥ1q =




0 0 1
2 ΩR(t) 0

0 E1 0 0
1
2 ΩR(t) 0 ∆1

1
2 ΩB(t)

0 0 1
2 ΩB(t) 0




Two-qubit Hamiltonian

Ĥ2q = Ĥ1q ⊗ 1 + 1⊗ Ĥ1q−U |rr〉〈rr |
Dipole-dipole interaction when both atoms in Rydberg state.

Only diagonal gates!
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Optimization of a Rydberg gate

0 10 20 30 40 50
OCT iteration

0.05

0.10

0.15

0.20
ga

te
 e

rro
r

full basis
τ = 25 ns, T = 75 ns
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Optimization of a Rydberg gate

0 10 20 30 40 50
OCT iteration

0.05

0.10

0.15

0.20
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Diagonal gates
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|0〉
|1〉

|i〉

|r〉

∆1

ΩR(t)τ = 25 ns

ΩB(t)
no coupling between |0〉, |1〉

Û = diag(e iφ00 , e iφ01 , e iφ10 , e iφ11 )

only diagonal gates are possible
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Optimization of a Rydberg gate
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Optimization of a Rydberg gate – asymptotic behavior

0 200 400 600 800 1000
OCT iteration

10-2

10-1

ga
te

 e
rro

r

full basis
3 states
2 states
2 states (weighted)

τ = 25 ns, T = 75 ns
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Example 2

Optimization of a non-diagonal gate
using transmon qubits
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Two coupled transmon qubits

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".

BLAIS et al. PHYSICAL REVIEW A 75, 032329 !2007"

032329-2

A. Blais et al. PRA 75, 032329 (2007)

Cavity mediates

driven excitation of qubit

interaction between left and right
qubit

|0〉

|1〉

|2〉

|3〉
...

g eff
i ε(t)

left qubit

|0〉

|1〉

|2〉

|3〉
...

g eff
j ε(t)

right qubit

Jeff
ij

Many gates possible, e.g.√
iSWAP:

Ô =




1 0 0 0
0 1√

2
i√
2

0

0 i√
2

1√
2

0

0 0 0 1
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lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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Conclusion

A set of three density matrices is sufficient for gate
optimization: (independent of dimension of Hilbert space!)

one to check dynamical map on subspace
one to check the basis
one to check the phases

Further reduction possible for restricted systems

States can (should!) be weighted according to physical
interpretation

⇒ Gate optimization in open quantum systems with large
Hilbert spaces have become significantly more feasible.

Reference:
M. H. Goerz, D. M. Reich, C. P. Koch. arXiv:1312.0111.
In press: New Journal of Physics (special issue)

Thank you
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Optimized dynamics of the Rydberg gate
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with dissipation, full basis with dissipation, two states (weighted)
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Two Coupled Transmon Qubits

qubits. Amazingly, the transmon can at the same time in-
crease the strength of electrical coupling between qubits, or
between a qubit and a transmission line cavity serving as a
bus.

Although the transmon has an EJ /EC ratio in between that
of typical charge qubits and typical phase qubits, it is impor-
tant to emphasize that the transmon is very different from
both the CPB and phase qubits, including the capacitively
shunted phase qubit proposed recently by Steffen et al. !17".
In the transmon, it is the natural anharmonicity of the cosine
potential which allows qubit operations, whereas in the phase
qubit, the EJ /EC ratio is so large that the required anharmo-
nicity can only be restored by driving a current I very close
to IC through the system, creating a washboard potential, see
Refs. !5–7" for recent reviews. The device presented in Ref.
!17" operated at an energy ratio of EJ /EC#2!104, whereas
the transmon will typically involve ratios of the order of
several tens up to several hundreds and is operated without
the need for any dc connections to the rest of the circuit.
Thus, the transmon is a new type of superconducting qubit
that should fix the main weakness of the CPB by featuring an
exponential gain in the insensitivity to charge noise. The fa-
vorable insensitivity of CPBs to other noise sources such as
critical current and flux noise is maintained $and further im-
proved% in the transmon system, rendering it a very promis-
ing candidate for the next generation of qubits. A comple-
mentary proposal for using a capacitor to modify the EJ /EC
ratio in superconducting flux qubits is put forward in Ref.
!18".

The outline of the paper is as follows. In Sec. II A, we
introduce the transmon and its effective quantum circuit. The
solution of the corresponding Schrödinger equation and an
analysis of its asymptotics enable a quantitative discussion of
the charge dispersion and the anharmonicity in Secs. II B and
II C, respectively. Section II D compares the transmon to
phase qubits, and Sec. II E provides additional information
about the flux degree of freedom in the split transmon, and
the role of asymmetry in the two Josephson junctions. The
circuit quantum electrodynamics $circuit-QED% physics !19"
of the transmon is investigated in Sec. III, where we show
that despite the smallness of the charge dispersion, the trans-
mon is expected to reach the strong-coupling limit of circuit
QED. That is, we show that even though the transmon en-
ergy levels are insensitive to low frequency voltages, transi-
tions between levels can strongly be driven by resonant ra-
diation. We discuss in detail the modifications of the
dispersive limit and the Purcell effect due to the increased
EJ /EC ratio. Sections IV and V are devoted to the investiga-
tion of noise in the transmon system and its projected effect
on relaxation $T1% and dephasing $T2% times. We conclude
our paper with a summary and a comprehensive comparison
of the transmon with existing superconducting qubits in Sec.
VI.

II. FROM THE COOPER PAIR BOX TO THE TRANSMON

A. Model

In close resemblance to the ordinary CPB $see, e.g., Ref.
!6"%, the transmon consists of two superconducting islands

coupled through two Josephson junctions, but isolated from
the rest of the circuitry. This dc-SQUID setup allows for the
tuning of the Josephson energy EJ=EJ,max &cos$"# /#0%& by
means of an external magnetic flux #. For simplicity, we
initially assume that both junctions are identical. $The dis-
cussion of the general case including junction asymmetry is
postponed until Sec. II E.% Schematics of the device design
and the effective quantum circuit for the transmon are de-
picted in Fig. 1.

As usual, the effective offset charge ng of the device, mea-
sured in units of the Cooper pair charge 2e, is controlled by
a gate electrode capacitively coupled to the island such that
ng=Qr /2e+CgVg /2e. Here Vg and Cg denote the gate voltage
and capacitance, respectively, and Qr represents the
environment-induced offset charge.

The crucial modification distinguishing the transmon from
the CPB is a shunting connection of the two superconductors
via a large capacitance CB, accompanied by a similar in-
crease in the gate capacitance Cg. As shown in Appendix A,
the effective Hamiltonian can be reduced to a form identical
to that of the CPB system !20",

Ĥ = 4EC$n̂ − ng%2 − EJ cos $̂ . $2.1%

It describes the effective circuit of Fig. 1$a% in the absence of
coupling to the transmission line $i.e., disregarding the reso-
nator mode modeled by Lr and Cr%, and can be obtained from
an analysis of the full network of cross capacitances as pre-
sented in Appendix A. The symbols n̂ and $̂ denote the num-

FIG. 1. $Color online% $a% Effective circuit diagram of the trans-
mon qubit. The two Josephson junctions $with capacitance and Jo-
sephson energy CJ and EJ% are shunted by an additional large ca-
pacitance CB, matched by a comparably large gate capacitance Cg.
$b% Simplified schematic of the transmon device design $not to
scale%, which consists of a traditional split Cooper pair box, shunted
by a short $L#% /20% section of twin-lead transmission line, formed
by extending the superconducting islands of the qubit. This short
section of line can be well approximated as a lumped-element ca-
pacitor, leading to the increase in the capacitances Cg1, Cg2, and CB!
and hence in the effective capacitances CB and Cg in the circuit.

KOCH et al. PHYSICAL REVIEW A 76, 042319 $2007%
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J. Koch et al. PRA 76, 042319 (2007)

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".
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qubits. Amazingly, the transmon can at the same time in-
crease the strength of electrical coupling between qubits, or
between a qubit and a transmission line cavity serving as a
bus.

Although the transmon has an EJ /EC ratio in between that
of typical charge qubits and typical phase qubits, it is impor-
tant to emphasize that the transmon is very different from
both the CPB and phase qubits, including the capacitively
shunted phase qubit proposed recently by Steffen et al. !17".
In the transmon, it is the natural anharmonicity of the cosine
potential which allows qubit operations, whereas in the phase
qubit, the EJ /EC ratio is so large that the required anharmo-
nicity can only be restored by driving a current I very close
to IC through the system, creating a washboard potential, see
Refs. !5–7" for recent reviews. The device presented in Ref.
!17" operated at an energy ratio of EJ /EC#2!104, whereas
the transmon will typically involve ratios of the order of
several tens up to several hundreds and is operated without
the need for any dc connections to the rest of the circuit.
Thus, the transmon is a new type of superconducting qubit
that should fix the main weakness of the CPB by featuring an
exponential gain in the insensitivity to charge noise. The fa-
vorable insensitivity of CPBs to other noise sources such as
critical current and flux noise is maintained $and further im-
proved% in the transmon system, rendering it a very promis-
ing candidate for the next generation of qubits. A comple-
mentary proposal for using a capacitor to modify the EJ /EC
ratio in superconducting flux qubits is put forward in Ref.
!18".

The outline of the paper is as follows. In Sec. II A, we
introduce the transmon and its effective quantum circuit. The
solution of the corresponding Schrödinger equation and an
analysis of its asymptotics enable a quantitative discussion of
the charge dispersion and the anharmonicity in Secs. II B and
II C, respectively. Section II D compares the transmon to
phase qubits, and Sec. II E provides additional information
about the flux degree of freedom in the split transmon, and
the role of asymmetry in the two Josephson junctions. The
circuit quantum electrodynamics $circuit-QED% physics !19"
of the transmon is investigated in Sec. III, where we show
that despite the smallness of the charge dispersion, the trans-
mon is expected to reach the strong-coupling limit of circuit
QED. That is, we show that even though the transmon en-
ergy levels are insensitive to low frequency voltages, transi-
tions between levels can strongly be driven by resonant ra-
diation. We discuss in detail the modifications of the
dispersive limit and the Purcell effect due to the increased
EJ /EC ratio. Sections IV and V are devoted to the investiga-
tion of noise in the transmon system and its projected effect
on relaxation $T1% and dephasing $T2% times. We conclude
our paper with a summary and a comprehensive comparison
of the transmon with existing superconducting qubits in Sec.
VI.

II. FROM THE COOPER PAIR BOX TO THE TRANSMON

A. Model

In close resemblance to the ordinary CPB $see, e.g., Ref.
!6"%, the transmon consists of two superconducting islands

coupled through two Josephson junctions, but isolated from
the rest of the circuitry. This dc-SQUID setup allows for the
tuning of the Josephson energy EJ=EJ,max &cos$"# /#0%& by
means of an external magnetic flux #. For simplicity, we
initially assume that both junctions are identical. $The dis-
cussion of the general case including junction asymmetry is
postponed until Sec. II E.% Schematics of the device design
and the effective quantum circuit for the transmon are de-
picted in Fig. 1.

As usual, the effective offset charge ng of the device, mea-
sured in units of the Cooper pair charge 2e, is controlled by
a gate electrode capacitively coupled to the island such that
ng=Qr /2e+CgVg /2e. Here Vg and Cg denote the gate voltage
and capacitance, respectively, and Qr represents the
environment-induced offset charge.

The crucial modification distinguishing the transmon from
the CPB is a shunting connection of the two superconductors
via a large capacitance CB, accompanied by a similar in-
crease in the gate capacitance Cg. As shown in Appendix A,
the effective Hamiltonian can be reduced to a form identical
to that of the CPB system !20",

Ĥ = 4EC$n̂ − ng%2 − EJ cos $̂ . $2.1%

It describes the effective circuit of Fig. 1$a% in the absence of
coupling to the transmission line $i.e., disregarding the reso-
nator mode modeled by Lr and Cr%, and can be obtained from
an analysis of the full network of cross capacitances as pre-
sented in Appendix A. The symbols n̂ and $̂ denote the num-

FIG. 1. $Color online% $a% Effective circuit diagram of the trans-
mon qubit. The two Josephson junctions $with capacitance and Jo-
sephson energy CJ and EJ% are shunted by an additional large ca-
pacitance CB, matched by a comparably large gate capacitance Cg.
$b% Simplified schematic of the transmon device design $not to
scale%, which consists of a traditional split Cooper pair box, shunted
by a short $L#% /20% section of twin-lead transmission line, formed
by extending the superconducting islands of the qubit. This short
section of line can be well approximated as a lumped-element ca-
pacitor, leading to the increase in the capacitances Cg1, Cg2, and CB!
and hence in the effective capacitances CB and Cg in the circuit.

KOCH et al. PHYSICAL REVIEW A 76, 042319 $2007%

042319-2

J. Koch et al. PRA 76, 042319 (2007)

resonator !Sec. V". This type of approach was also discussed
in Refs. #14,29$ and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator !Sec. VII". For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation #46,47$.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. #14$ and experimentally stud-
ied in Refs. #3,15–17$. Measurement-induced dephasing was
theoretically studied in Ref. #18$. As shown in Fig. 1, this
system consists of a superconducting charge qubit #1,48,49$
strongly coupled to a transmission line resonator #50$. Near
its resonance frequency !r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation !creation" operator a!†", the reso-
nator can then be described by the Hamiltonian

Hr = !ra
†a , !2.1"

with !r=1/%LC and where we have taken "=1. Using this
simple model, the voltage across the LC circuit !or, equiva-
lently, on the center conductor of the resonator" can be writ-
ten as VLC=Vrms

0 !a†+a", where Vrms
0 =%"!r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
&5 #m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b&0.2 V/m for typical realizations

#3,15–17$.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. #29$. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator #14$.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether #17$.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
$xj

−
EJj

2
$zj

, !2.2"

where Eelj
=4ECj

!1−2ngj
" is the electrostatic energy and EJj

=EJj

maxcos!%& j /&0" is the Josephson coupling energy. Here,
ECj

=e2 /2C'j
is the charging energy with C'j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and & j the externally ap-
plied flux with &0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator !antinodes of the voltage", the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc !coming from a dc bias
applied to the input port of the resonator" and a quantum part
VLC. Following Ref. #14$, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = !ra
†a + '

j=1,2

!aj

2
$zj

− '
j=1,2

gj!# j − cj$zj
+ sj$xj

"!a† + a" ,

!2.3"

where !aj
=%EJj

2 + #4ECj
!1−2ng,j"$2 is the transition fre-

quency of qubit j and gj =e!Cg,j /C',j"Vrms
0 /" is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined # j =1−2ng,j, cj =cos ( j and sj
=sin ( j, where ( j =arctan#EJj

/ECj
!1−2ng,j"$ is the mixing

angle #14$.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized #5$, and neglecting fast oscil-
lating terms using the rotating-wave approximation !RWA",
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form #77$

FIG. 1. !Color online" Layout and lumped element version of
circuit QED. Two superconducting charge qubits !green" are fabri-
cated inside the superconducting 1D transmission line resonator
!blue".

BLAIS et al. PHYSICAL REVIEW A 75, 032329 !2007"

032329-2

A. Blais et al. PRA 75, 032329 (2007)

Full Hamiltonian

Ĥ = ωc â†â︸ ︷︷ ︸
1○

+ω1b̂
†
1b̂1 + ω2b̂

†
2b̂2︸ ︷︷ ︸

2○

− 1

2
(α1b̂

†
1b̂
†
1b̂1b̂1 + α2b̂

†
2b̂
†
2b̂2b̂2)

︸ ︷︷ ︸
3○

+

+ g1(b̂
†
1â + b̂1â†) + g2(b̂

†
2â + b̂2â†)︸ ︷︷ ︸

4○

+ ε∗(t)â + ε(t)â†︸ ︷︷ ︸
5○
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IBM Qubit – Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω1 4.3796 GHz
qubit frequency ω2 4.6137 GHz
drive frequency ωd 4.4985 GHz
anharmonicity α1 -239.3 MHz
anharmonicity α2 -242.8 MHz
effective qubit-qubit coupling J -2.3 MHz
qubit 1,2 decay time T1 38.0 µs, 32.0 µs
qubit 1,2 dephasing time T∗2 29.5 µs, 16.0 µs

Near resonance of
α1 with ω1 − ω2

single frequency
drive centered
between two
qubits
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Â
)

Michael Goerz • Uni Kassel • Efficient OCT for a Unitary under Dissipation 25 / 20



Transmon Optimized Pulse
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FIG. 9: Shape and spectrum of an optimized pulse, from optimization with 3 weighted states, with strong dissipation. The
panels from top to bottom show the amplitude, complex phase, and spectrum of the optimized pulse ⌦(t). The spectrum is
shown in the rotating frame, with zero corresponding to the driving frequency wd of the field. The transition frequencies from
the logical subspace are indicated by vertical dashed lines. These are �1 = w1�wd = �118.88 MHz and �1��1 = �358.18 MHz
in red for the left qubit, and �2 = w2 �wd = 115.20 MHz and �2 � �2 = �127.58 MHz in blue for the right qubit. The central
peak in the spectrum has been cut o↵ to show the relevant side-peaks, and would extend to a value of approximately 10.0. For
all quantities, the values for the guess pulse are shown as a dotted line.

during optimization is two for Hamiltonians that admit only diagonal gates and three for Hamiltonians that allow for
both diagonal and non-diagonal gates. Remarkably, the size of the minimal set of states is independent of Hilbert
space dimension.

While the minimal number of states allows for determining whether a quantum gate has been implemented, it is
insu�cient to deduce bounds on the gate error [29]. Numerical and analytical bounds require d + 1, respectively 2d,
states in the reduced set, where d is the dimension of the Hilbert space on which the optimization target is defined.
Employing the sets of d + 1, respectively 2d, states in quantum gate optimization is still significantly more e�cient,
both with respect to CPU time and memory requirements, than utilizing a full basis of Liouville space, with d2

elements [9, 12, 23].
We have demonstrated the power of our approach in the optimization of a diagonal and a non-diagonal two-qubit

gate. Specifically, we have optimized a controlled phasegate for trapped neutral atoms that are excited into a Rydberg
state and subject to fast spontaneous emission from an intermediate state. The best performance was achieved by
two states in the reduced set and a large weight of the Hilbert-Schmidt product for the state responsible for detecting
phase errors. In the optimization of a

p
iSWAP gate for two transmons coupled to the same transmission line cavity

and subject to both energy relaxation and pure dephasing, we have found the best, and roughly identical, performance
for the reduced sets consisting of d + 1, respectively 2d, states. In all cases, the final gate error was limited by the
decoherence rates. This confirms that employing a reduced set of states in quantum gate optimization is su�cient to
determine the physical limit for the gate error.

The significant reduction in computational resources that we report here opens the door for a large-scale, systematic
investigation of the fundamental limits of high-fidelity quantum gates in the presence of decoherence. Our approach
is not tied to a specific decoherence model. It therefore allows to explore, using optimal control theory, settings for
extended Hilbert spaces and beyond Markovian master equations, where a quantum system’s complexity may possibly
be exploited for control.
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Transmon Population Dynamics
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FIG. 10: Population dynamics for ⇢̂(t = 0) = |01ih01| (a) and ⇢̂(t = 0) = |11ih11| (b) under the pulse shown in Fig. 9. For
each of the two propagated states, the expectation value of the right qubit excitation quantum number j is shown in the top
panel, with the standard deviation in gray, the expectation value for the corresponding quantum number i for the left qubit
is shown in the center panel, and the population dynamics for all the logical subspace states is shown in the bottom panel
(colored lines), along with the total population in the logical subspace (black line).

APPENDIX A: THREE STATES ARE SUFFICIENT TO ASSESS WHETHER A DESIRED TARGET
UNITARY IS IMPLEMENTED

In the following we discuss the functional Jdist,

Jdist =

3X

i=1

Tr

⇣
Ô⇢̂i(0)Ô

† � ⇢̂i (T )
⌘2
�

, (A1)

which is built on the distance between the ideal and actual states at time T . It attains its global minimum, Jdist = 0,
if and only if the initial states defined in Section II, ⇢̂i(0) for i = 1, 2, 3, are mapped to their correct target states, i.e.,
fulfill condition (3). This functional motivates the use of the optimization functional JT , Eq. (1), which is also built
on only three states, as discussed in Sec. A 1. JT and Jdist di↵er in that JT evaluates the Hilbert-Schmidt products,
i.e., the projections of the actual onto the ideal states instead of the trace distance. The construction of Jdist, and
subsequently JT , is rationalized by a theorem for unital, i.e., identity preserving, dynamical maps. Specifically, the
theorem states that a complete and totally rotating set of density matrices is su�cient to determine whether a given
time evolution is unitary. The functional (A1) exploits the further property of a complete and totally rotating set of
density matrices to di↵erentiate any two unitaries [29]. The theorem for unital dynamical maps is proven in Sec. A 2.

It should be stressed that we use JT , Eq. (1), instead of Jdist, Eq. (A1), as optimization functional. This is motivated
by the convexity of JT which implies a much more favorable convergence behavior than would be obtained with a

Ψ(t = 0) = |01〉
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time evolution is unitary. The functional (A1) exploits the further property of a complete and totally rotating set of
density matrices to di↵erentiate any two unitaries [29]. The theorem for unital dynamical maps is proven in Sec. A 2.

It should be stressed that we use JT , Eq. (1), instead of Jdist, Eq. (A1), as optimization functional. This is motivated
by the convexity of JT which implies a much more favorable convergence behavior than would be obtained with a

Ψ(t = 0) = |11〉
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