Comparison of GRAPE/LBFGS and Krotov in a High-Dimensional Hilbert Space

Michael Goerz
FU Berlin
C. Koch Group

OCT Comparison Workshop
Cambridge, UK
November 26, 2010

Coherent Transfer between Vibrational States in Rb2

Outline

1 Grape and LBFGS

2 Krotov

3 Coherent Transfer between Vibrational States in Rb2

Grape and LBFGS

Grape

Acronym

GRAPE: Gradient Ascent Pulse Engineering

Fig. 1. Schematic representation of a control amplitude $u_{\mathrm{k}}(\mathrm{t})$, consisting of N steps of duration $\Delta t=T / N$. During each step j, the control amplitude $u_{k}(j)$ is constant. The vertical arrows represent gradients $\delta \Phi_{0} / \delta u_{k}(j)$, indicating how each amplitude $u_{k}(j)$ should be modified in the next iteration to improve the performance function Φ_{0}.

at time index j : go in direction of gradient

Pulse Update

$$
u_{k}(j) \longrightarrow u_{k}(j)-\epsilon \frac{\partial \Phi_{0}}{\partial u_{k}(j)}
$$

Second Derivative: Newton's Method

Newton's method (one-dimensional case)

$$
\begin{aligned}
& f\left(x_{0}+\Delta x\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot \Delta x+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \cdot(\Delta x)^{2} \\
& \frac{\mathrm{~d} f\left(x_{0}+\Delta x\right)}{\mathrm{d}(\Delta x)}=0 \quad \Rightarrow \quad x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)}
\end{aligned}
$$

Second Derivative: Newton's Method

Newton's method (one-dimensional case)

$$
\begin{aligned}
& f\left(x_{0}+\Delta x\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot \Delta x+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \cdot(\Delta x)^{2} \\
& \frac{\mathrm{~d} f\left(x_{0}+\Delta x\right)}{\mathrm{d}(\Delta x)}=0 \quad \Rightarrow \quad x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)}
\end{aligned}
$$

Newton's method (multi-dimensional case)
Sequence

$$
\vec{x}_{n+1}=\vec{x}_{n}-H_{f}^{-1}\left(\vec{x}_{n}\right) \cdot \vec{\nabla} f\left(\vec{x}_{0}\right)
$$

converges towards extremum.

Gradient Descent and Newton's Method

Optimization towards an extremal point by gradient descent (green) and Newton's method (red)

Quasi-Newton

Newton's method (multi-dimensional case)

Sequence

$$
\vec{x}_{n+1}=\vec{x}_{n}-H_{f}^{-1}\left(\vec{x}_{n}\right) \cdot \vec{\nabla} f\left(\vec{x}_{0}\right)
$$

converges towards extremum.
Find matrix B as approximation to H^{-1} so that B fulfills the secant equation.

Secant Equation

$$
\frac{f^{\prime}\left(x_{0}+\Delta x\right)-f^{\prime}\left(x_{0}\right)}{\left(x_{0}+\Delta x\right)-x_{0}}=B
$$

Underdetermined in higher dimensions! LBFGS is one option to construct B.

Quasi-Newton Algorithms

Quasi-Newton method (general)

Given a $\vec{x}_{0} \in \mathbb{R}^{N}$ chosen sufficiently close to a local extremum \vec{x}_{E} of f and an initial guess for the Hessian B_{0} (for example $B_{0}=I$) repeat the following steps to obtain \vec{x}_{E} :

1 Calculate the step $\Delta \vec{x}_{k}$ using the current approximated Hessian B_{k} by:
$\Delta \vec{x}_{k}=-B_{k}^{-1} \cdot \vec{\nabla} f\left(\vec{x}_{k}\right)$.
■ Calculate the new $\vec{x}_{k+1}: \vec{x}_{k+1}=\vec{x}_{k}+\Delta \vec{x}_{k}$.
3 Use the gradient at the new point $\vec{\nabla} f\left(\vec{x}_{k+1}\right)$ and the difference in gradients between new and old point: $\vec{y}_{k}=\vec{\nabla} f\left(\vec{x}_{k+1}\right)-\vec{\nabla} f\left(\vec{x}_{k}\right)$ to find a new approximation for the Hessian B_{k+1}.

Linesearch

Introduce parameter $\alpha_{k} \in[0,1]$ to modify step size:

$$
\Delta \vec{x}_{k}=-\alpha_{k} \cdot B_{k}^{-1} \cdot \vec{\nabla} f\left(\vec{x}_{k}\right)
$$

LBFGS

- Quasi-Newton algorithms are approximate solutions to an extremization problem using information from the second order Taylor expansion of the function
- BFGS is a quasi-Newton algorithm using a rank-two update formula involving only gradients to the Hessian needed to determine the update direction; for convex functions it is globally and monotonic convergent if one enhances it by line search fulfilling the Wolfe conditions
- L-BFGS uses only information from the gradients and point vectors of previous steps to solve the memory problem in storing the BFGS approximated Hessian under certain additional assumptions the convergence behavior stays intact

An LBFGS implementation is available as a free Fortran 77 library:
Zhu et al. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 550 (1997)
http://portal.acm.org/citation.cfm?id=279236

Calculating the Gradient

$$
\begin{aligned}
& \left.J=-F(\Psi(T))+\int_{t=0}^{T} g_{a}(\epsilon(t)) \mathrm{d} t+\int_{t=0}^{T} g_{b}(\Psi, \epsilon)\right) \mathrm{d} t \\
& F=\frac{1}{N} \Re \operatorname{tr}\left\{\hat{O}^{\dagger} \hat{U}(T, 0)\right\}=\frac{1}{N} \Re \sum_{k=1}^{N}\left\langle\Psi_{t g}\right| \hat{U}(T, 0)\left|\Psi_{i n}\right\rangle \\
& g_{a}=\frac{\alpha}{S(t)}\left(\epsilon-\epsilon^{\text {old }}\right)^{2}
\end{aligned}
$$

Gradient for every pulse value

$$
G_{i}=\frac{\partial J}{\partial \epsilon_{i}}=-\frac{\partial F}{\partial \epsilon_{i}}+\frac{\partial}{\partial \epsilon_{i}} \sum_{i} \frac{\alpha}{S_{i}}\left(\epsilon_{i}-\epsilon_{i}^{\text {old }}\right)^{2} \Delta t
$$

Calculating the Gradient

$$
\begin{aligned}
& \frac{\partial}{\partial \epsilon_{2}} F=\Re\left\langle\Psi_{t g}\right| \hat{U}_{5} \hat{U}_{4} \hat{U}_{3} \frac{\partial \hat{U}_{2}}{\partial \epsilon_{2}} \hat{U}_{1}\left|\Psi_{i n}\right\rangle ; \quad \hat{U}_{i}=e^{-i \hat{H}\left(\epsilon_{i}\right) \Delta t} \\
& =\Re\left\langle\Psi_{b w}\right| \frac{\partial \hat{U}_{2}}{\partial \epsilon_{2}}\left|\Psi_{f w}\right\rangle \\
& \frac{\partial \hat{U}_{i}}{\partial \epsilon_{i}}=\frac{\partial}{\partial \epsilon_{i}} e^{-i \hat{H}\left(\epsilon_{i}\right) \Delta t} \\
& =\sum_{n=1}^{\infty} \frac{(-i \Delta t)^{n}}{n!} \sum_{k=0}^{n-1} \hat{H}^{k} \frac{\partial H\left(\epsilon_{i}\right)}{\partial \epsilon_{i}} \hat{H}^{n-k-1}
\end{aligned}
$$

The Basic Idea of Krotov: Convergence by Construction

Ingredients:

- final-time target
- time-dep. targets / costs

$$
\begin{array}{r}
J_{T}\left[\varphi_{T}, \varphi_{T}^{*}\right] \\
g_{a}[\epsilon]+g_{b}\left[\varphi(t), \varphi^{*}(t)\right] \\
i \hbar \frac{\partial}{\partial t}|\varphi(t)\rangle=\hat{\mathbf{H}}(t)|\varphi(t)\rangle \quad\left|\varphi\left(t_{0}\right)\right\rangle=\left|\varphi_{0}\right\rangle
\end{array}
$$

- equations of motion

Construction of auxiliary functional L

$$
L\left[\varphi, \varphi^{*}, \epsilon, \Phi\right]=J\left[\varphi, \varphi^{*}, \epsilon\right]
$$

choose arbitrary scalar potential $\Phi\left[\varphi, \varphi^{*}, t\right]$ such that

$$
L\left[\varphi^{i}, \varphi^{*, i}, \epsilon^{i}, \Phi\right] \geq L\left[\varphi^{i+1}, \varphi^{*, i+1}, \epsilon^{i+1}, \Phi\right]
$$

\longrightarrow building in monotonic convergence

Auxiliary functional L

$$
\begin{aligned}
L\left[\varphi, \varphi^{*}, \epsilon, \Phi\right]= & G\left[\varphi(T), \varphi^{*}(T)\right]-\Phi\left[\varphi(0), \varphi^{*}(0), 0\right] \\
& -\int_{0}^{T} R\left[\varphi(t), \varphi^{*}(t), \epsilon(t), t\right] d t
\end{aligned}
$$

final-time contribution:

$$
G\left[\varphi(T), \varphi^{*}(T)\right]=J_{T}\left[\varphi(T), \varphi^{*}(T)\right]+\Phi\left[\varphi(T), \varphi^{*}(T), T\right]
$$

intermediate-time contribution:

$$
\begin{aligned}
R\left[\varphi(t), \varphi^{*}(t), \epsilon(t), t\right]= & -\left(g_{a}[\epsilon(t)]+g_{b}\left[\varphi(t), \varphi^{*}(t)\right]\right) \\
& +\frac{\partial \Phi}{\partial t}+\sum_{k=1}^{N}\left[\nabla_{\varphi_{k}} \Phi \cdot f_{k}\left[\varphi, \varphi^{*}, \epsilon, t\right]\right. \\
& \left.+\nabla_{\varphi_{k}^{*}} \Phi \cdot f_{k}^{*}\left[\varphi, \varphi^{*}, \epsilon, t\right]\right]
\end{aligned}
$$

Central Idea of Krotov's Method

We want a minimum of L, i.e. minimum of $G \&$ maximum of R but L is changed by both changes in $\vec{\varphi}$ and changes in ϵ

Krotov's Solution

(i) choose Φ at the extremum, $\vec{\varphi}^{i}$, such that it is the worst possible choice with respect to any change in the states \curvearrowright maximize L when going from $\vec{\varphi}^{i}$ to $\vec{\varphi}^{i+1}$ for fixed ϵ^{i}
(ii) then any change in the field from ϵ^{i} to ϵ^{i+1} will lead to a minimization of L

$$
\begin{gathered}
\epsilon^{(i+1)}(t)=\arg \max _{\epsilon(t)} R\left(\vec{\varphi}(t)^{(i+1)}, \epsilon(t), t\right) \quad \text { or } \\
\frac{\partial R}{\partial \epsilon}\left(\vec{\varphi}^{(i+1)}, \epsilon^{(i+1)}, t\right)=0 \quad, \quad \frac{\partial^{2} R}{\partial \epsilon^{2}}\left(\vec{\varphi}^{(i+1)}, \epsilon^{(i+1)}, t\right)<0
\end{gathered}
$$

Pulse Update by Krotov

Krotov Update Formula

$$
\Delta \epsilon(t)=\frac{S(t)}{\alpha} \Im\left[\sum_{k=1}^{N} a_{k}\left\langle\Psi_{i n, k}\right| \hat{O}^{\dagger} \hat{U}^{\dagger}\left(T \rightarrow t, \epsilon^{(i)}\right) \hat{\mu} \hat{U}\left(0 \rightarrow t, \epsilon^{(i+1)}\right)\left|\Psi_{i n, k}\right\rangle\right]
$$

interference between past and future events

Second Order Krotov

Second Order Krotov Update Formula

$$
\begin{array}{ll}
\Delta \epsilon(t)=\frac{S(t)}{\alpha} \Im\left[\sum_{k=1}^{N}\left\langle\chi_{k}^{(i)}(t)\right| \frac{\partial \hat{H}}{\partial \epsilon}\left|\phi_{k}^{(i+1)}(t)\right\rangle \leftarrow\right. \text { first order } \\
\text { second order } \rightarrow \quad & \left.+\frac{\sigma(t)}{2} \sum_{k=1}^{N}\left\langle\Delta \phi_{k}^{(i+1)}(t)\right| \frac{\partial \hat{H}}{\partial \epsilon}\left|\phi_{k}^{(i+1)}(t)\right\rangle\right]
\end{array}
$$

Second Order $\sigma(t)$

$$
\sigma(t)= \begin{cases}e^{\bar{B}(T-t)}(\overline{\bar{C}}-\bar{A}) \bar{C} \overline{\bar{B}} & \text { for } \bar{B} \neq 0 \\ \bar{C}(T-t)-\bar{A} & \text { for } \bar{B}=0\end{cases}
$$

Daniel Reich, Mamadou Ndong and Christiane P. Koch
Monotonically convergent optimization in quantum control using Krotov's method. arXiv:1008.5126

Coherent Transfer between Vibrational States in Rb2

Coherent Transfer between Vibrational States in Rb2

Questions for LBFGS

Cost Functional

$$
J=-\left\langle\Psi_{t g}\right| \hat{U}(T, 0)\left|\Psi_{i n}\right\rangle+\int_{t=0}^{T} g_{a}(\epsilon(t)) \mathrm{d} t
$$

- Can I include the running cost?
- Which order of the gradient do I need?
- How much does LBFGS improve on Grape?
- How does LBFGS compare to Krotov?

Simple Problem: $v=10 \rightarrow v=0$

Running cost with LBFGS $(v=10 \rightarrow v=0)$

Remember the Linesearch!

Running cost with LBFGS $(v=10 \rightarrow v=0)$

Order of the Gradient in LBFGS $(v=10 \rightarrow v=0)$

LBFGS vs Grape $(v=10 \rightarrow v=0)$

Krotov vs LBFGS $(v=10 \rightarrow v=0)$

- Can I include the running cost? - No
- Which order of the gradient do I need? - At least second order
- How much does LBFGS improve on Grape? - A lot. (Forget about Grape)
- How does LBFGS compare to Krotov? - Not too shabby

More Advanced Problem: $v=70 \rightarrow v=0$

Running cost with LBFGS $(v=70 \rightarrow v=0)$

Running cost with LBFGS $(v=70 \rightarrow v=0)$

LBFGS vs Grape $(v=70 \rightarrow v=0)$

Coherent Transfer between Vibrational States in Rb2

Order of the Gradient in LBFGS $(v=70 \rightarrow v=0)$

Krotov vs LBFGS $(v=70 \rightarrow v=0)$

Krotov Second Order

FIG. 2: (color online) Convergence of the first order and second order constructions of the optimization algorithm as measured by the final-time objective, J_{T}, for state-to-state transfer from vibrational level $v=10$ to $v=0$.

FIG. 5: (color online) Convergence of the first order and second order constructions for state-to-state transfer with statedependent cost. The operator $\hat{\mathbf{D}}$ is taken to be the projector onto a forbidden subspace, i.e. the second order construction is required.

Daniel Reich, Mamadou Ndong and Christiane P. Koch
Monotonically convergent optimization in quantum control using Krotov's method. arXiv:1008.5126

Conclusions

■ Use LBFGS if gradient can be calculated easily. Watch the number of linesearches if propagation is expensive.

- Make sure the gradient is exact enough (at least second order)
- Use Krotov second order when cost functional requires it, e.g. with state-dependent costs.
■ Combine Krotov with LBFGS?

AG Koch - Moving from Berlin to Kasse!!

- Christiane Koch, already at Kassel
- Daniel Reich

■ Mamadou Ndong, now at Laboratoire de Chimie Physique d'Orsay

- Ruzin Ağanoğlu
- Anton Haase

