Optimal Control Theory for Quantum Gates with Rydberg Atoms and Superconducting Qubits under Dissipative Dynamics

> Michael Goerz Universität Kassel

December 11, 2013

Whaley Group Seminar UC Berkeley

Part I

- Optimal control theory for a unitary operation under dissipative evolution
 - Example 1: Controlled-Phase Gate with Rydberg Atoms
 - Example 2: \sqrt{iSWAP} using Transmon Qubits

Part II

- Optimizing a Rydberg Gate for Robustness
- Optimal Control of Superconducting Qubits

Part I

OCT for a unitary operation under dissipative evolution

D. Reich, G. Gualdi, C.P. Koch. PRA 88, 042309 (2013)
 M. Goerz, D. Reich, C.P. Koch. arxiv:1312.0111

$$CPHASE = diag(-1, 1, 1, 1)$$
$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$CPHASE = diag(-1, 1, 1, 1) \qquad Goal: Maximize$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad F = \frac{1}{d} \sum_{i=1}^{d} \Re(\langle \Psi_{i} | \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} | \Psi_{i} \rangle$$

$$Two-qubit gates: d = 4$$

$$CPHASE = diag(-1, 1, 1, 1) \qquad Goal: Maximize$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad F = \frac{1}{d} \sum_{i=1}^{d} \Re(\langle \Psi_{i} | \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} | \Psi_{i} \rangle$$

$$Two-qubit gates: d = 4$$

$$CPHASE = diag(-1, 1, 1, 1) \qquad Goal: Maximize$$

$$F = \frac{1}{d} \sum_{i=1}^{d} \Re \left(\frac{\Psi_{i}}{\hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} | \Psi_{i} \right)}{\mathsf{Two-qubit gates:} d = 4$$

$$CPHASE = diag(-1, 1, 1, 1)$$

$$Goal: Maximize$$

$$F = \frac{1}{d} \sum_{i=1}^{d} \Re e \left\langle \Psi_i \middle| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} \middle| \Psi_i \right\rangle$$

$$Two-qubit gates: d = 4$$

$$\Delta \epsilon(t) \propto \left\langle \chi(t) \middle| \partial_{\epsilon} \hat{\mathbf{H}} \middle| \Psi(t) \right\rangle$$

$$|11\rangle \underbrace{\Delta \epsilon(t) \propto \left\langle \chi(t) \middle| \partial_{\epsilon} \hat{\mathbf{H}} \middle| \Psi(t) \right\rangle}_{|11\rangle \underbrace{\epsilon^{\text{new}}}_{i\text{ teration}} \underbrace{\epsilon^{\text{old}}}_{0} \hat{\mathbf{O}} \middle| 10\rangle}_{|01\rangle \underbrace{\epsilon^{\text{new}}}_{0} \underbrace{\epsilon^{\text{old}}}_{0} \hat{\mathbf{O}} \middle| 01\rangle}_{|00\rangle \underbrace{\epsilon^{\text{new}}}_{0} \underbrace{\epsilon^{\text{old}}}_{0} \hat{\mathbf{O}} \middle| 00\rangle$$

t₀

t

Т

In the real world: decoherence

$$\hat{\rho}(T) = \mathcal{D}(\hat{\rho}(0));$$
 e.g. $\frac{\partial \hat{\rho}}{\partial t} = \frac{i}{\hbar} [\hat{\mathbf{H}}, \hat{\rho}] + \mathcal{L}_D(\hat{\rho})$

$$\hat{\rho}(T) = \mathcal{D}(\hat{\rho}(0)); \quad \text{e.g.} \ \frac{\partial \hat{\rho}}{\partial t} = \frac{i}{\hbar} [\hat{\mathbf{H}}, \hat{\rho}] + \mathcal{L}_{D}(\hat{\rho})$$

Lift $F = \frac{1}{d} \sum_{i=1}^{d} \mathfrak{Re} \left\langle \Psi_{i} \middle| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} \middle| \Psi_{i} \right\rangle$ to Liouville space.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011)

$$\Rightarrow F = \frac{1}{d^2} \mathfrak{Re} \sum_{j=1}^{d^2} \operatorname{tr} \left[\mathbf{\hat{O}} \hat{\rho}_j(0) \mathbf{\hat{O}}^{\dagger} \hat{\rho}_j(T) \right]$$

$$\hat{\rho}(T) = \mathcal{D}(\hat{\rho}(0)); \quad \text{e.g.} \ \frac{\partial \hat{\rho}}{\partial t} = \frac{i}{\hbar} [\hat{\mathbf{H}}, \hat{\rho}] + \mathcal{L}_{D}(\hat{\rho})$$

Lift $F = \frac{1}{d} \sum_{i=1}^{d} \mathfrak{Re} \left\langle \Psi_{i} \middle| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} \middle| \Psi_{i} \right\rangle$ to Liouville space.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011)

$$\Rightarrow F = \frac{1}{d^2} \mathfrak{Re} \sum_{j=1}^{d^2} \operatorname{tr} \left[\hat{\mathbf{O}} \hat{\rho}_j(0) \hat{\mathbf{O}}^{\dagger} \hat{\rho}_j(T) \right]$$

 d^2 matrices to propagate! (16 for two-qubit gate)

$$\hat{\rho}(T) = \mathcal{D}(\hat{\rho}(0)); \quad \text{e.g. } \frac{\partial \hat{\rho}}{\partial t} = \frac{i}{\hbar} [\hat{\mathbf{H}}, \hat{\rho}] + \mathcal{L}_{D}(\hat{\rho})$$

Lift $F = \frac{1}{d} \sum_{i=1}^{d} \mathfrak{Re} \left\langle \Psi_{i} \middle| \hat{\mathbf{O}}^{\dagger} \hat{\mathbf{P}} \hat{\mathbf{U}}(T, 0, \epsilon) \hat{\mathbf{P}} \middle| \Psi_{i} \right\rangle$ to Liouville space.

Kallush & Kosloff, Phys. Rev. A 73, 032324 (2006),

Schulte-Herbrüggen et al., J. Phys. B 44, 154013 (2011)

$$\Rightarrow F = \frac{1}{d^2} \mathfrak{Re} \sum_{j=1}^{d^2} \operatorname{tr} \left[\hat{\mathbf{0}} \hat{\rho}_j(0) \hat{\mathbf{0}}^{\dagger} \hat{\rho}_j(T) \right]$$

Claim

We only need to propagate **three** matrices (independent of d), instead of d^2 .

No need to characterize the full dynamical map!

1) Do we stay in the logical subspace?

1) Do we stay in the logical subspace?

$$\hat{
ho}_3 = rac{1}{4} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

$$\hat{
ho}_3 = rac{1}{4} egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

$$\hat{\rho}_1 = \frac{1}{20} \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \qquad \hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

$$\hat{\rho}_1 = \frac{1}{20} \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \qquad \hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

E.g. $\hat{\mathbf{0}} = \text{diag}(-1, 1, 1, 1);$ For $\hat{\mathbf{0}} = \mathbb{1}$ using just $\hat{\rho}_1$ will not distinguish $\hat{\mathbf{0}}$ from $\hat{\mathbf{0}}$. $(\hat{\mathbf{0}}\hat{\rho}_1\hat{\mathbf{0}}^{\dagger} = \hat{\mathbf{0}}\hat{\rho}_1\hat{\mathbf{0}}^{\dagger})$

- 1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

$$\hat{\rho}_1 = \frac{1}{20} \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \qquad \hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

E.g.
$$\hat{\mathbf{O}} = \text{diag}(-1, 1, 1, 1);$$

For $\hat{\mathbf{U}} = \text{diag}(e^{i\phi_{00}}, e^{i\phi_{01}}, e^{i\phi_{10}}, e^{i\phi_{11}})$
using just $\hat{\rho}_1$ will not distinguish $\hat{\mathbf{U}}$ from $\hat{\mathbf{O}}$. $(\hat{\mathbf{U}}\hat{\rho}_1\hat{\mathbf{U}}^{\dagger} = \hat{\mathbf{O}}\hat{\rho}_1\hat{\mathbf{O}}^{\dagger})$

- 1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

E.g.
$$\hat{\mathbf{O}} = \text{diag}(-1, 1, 1, 1);$$

For $\hat{\mathbf{U}} = \text{diag}(e^{i\phi_{00}}, e^{i\phi_{01}}, e^{i\phi_{10}}, e^{i\phi_{11}})$
using just $\hat{\rho}_1$ will not distinguish $\hat{\mathbf{U}}$ from $\hat{\mathbf{O}}$. $(\hat{\mathbf{U}}\hat{\rho}_1\hat{\mathbf{U}}^{\dagger} = \hat{\mathbf{O}}\hat{\rho}_1\hat{\mathbf{O}}^{\dagger})$

- 1) Do we stay in the logical subspace?
- (2) Are we unitary, and if yes, did we implement the right gate?

 $\hat{\rho}_1$, $\hat{\rho}_2$, $\hat{\rho}_3$ together guarantee that $\mathcal{D}(\hat{\rho})$ is unitary on the logical subspace.

$$\hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

dynamical map in the logical subspace

$$\hat{\rho}_1 = \frac{1}{20} \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

gate is diagonal in the same basis as $\boldsymbol{\hat{O}}$

$$\bullet \ \hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

dynamical map in the logical subspace

$$\hat{\rho}_1 = \frac{1}{20} \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

gate is diagonal in the same basis as $\hat{\mathbf{O}}$

Totally rotated state: relative phases between mapped logical eigenstates

$$\hat{\rho}_3 = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

dynamical map in the logical subspace

Example 1: Optimization of a Rydberg Gate

Two trapped neutral atoms

Single-qubit Hamiltonian

Two trapped neutral atoms

Single-qubit Hamiltonian

$$\Delta_{2} = \frac{|r\rangle}{\left(\frac{\Omega_{B}}{2}s_{2}(t)\right)} = \begin{pmatrix} 0 & 0 & \frac{\Omega_{R}}{2}s_{1}(t) & 0 \\ 0 & E1 & 0 & 0 \\ \frac{\Omega_{R}}{2}s_{1}(t) & 0 & \Delta_{1} & \frac{\Omega_{B}}{2}s_{2}(t) \\ 0 & & \frac{\Omega_{B}}{2}s_{2}(t) & \Delta_{2} \end{pmatrix}$$

Two-qubit Hamiltonian

$$\mathbf{\hat{H}}_{2q} = \mathbf{\hat{H}}_{1q} \otimes \mathbb{1} + \mathbb{1} \otimes \mathbf{\hat{H}}_{1q} - \mathbf{U} \ket{rr} \langle rr |$$

dipole-dipole interaction when both atoms in Rydberg state

Two trapped neutral atoms

Single-qubit Hamiltonian

$$\Delta_{2} = \frac{|r\rangle}{\left(\frac{\Omega_{B}}{2}s_{2}(t)\right)} = \begin{pmatrix} 0 & 0 & \frac{\Omega_{R}}{2}s_{1}(t) & 0 \\ 0 & E1 & 0 & 0 \\ \frac{\Omega_{R}}{2}s_{1}(t) & 0 & \Delta_{1} & \frac{\Omega_{B}}{2}s_{2}(t) \\ 0 & & \frac{\Omega_{B}}{2}s_{2}(t) & \Delta_{2} \end{pmatrix}$$

Two-qubit Hamiltonian

$$\mathbf{\hat{H}}_{2q} = \mathbf{\hat{H}}_{1q} \otimes \mathbb{1} + \mathbb{1} \otimes \mathbf{\hat{H}}_{1q} - \mathbf{\textit{U}} \ket{\textit{rr}} \langle \textit{rr} |$$

dipole-dipole interaction when both atoms in Rydberg state

no coupling between $|0\rangle\text{, }|1\rangle \Rightarrow$ only diagonal gates

$$\mathbf{\hat{U}}=\mathsf{diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$$

first: optimize in Liouville space – but without dissipation

no coupling between |0
angle, |1
angle $\hat{f U}={\sf diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$

only diagonal gates are possible

no coupling between |0
angle, |1
angle $\hat{f U}={
m diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$

only diagonal gates are possible

no coupling between |0
angle, |1
angle $\hat{f U}={
m diag}(e^{i\phi_{00}},e^{i\phi_{01}},e^{i\phi_{10}},e^{i\phi_{11}})$

only diagonal gates are possible

with dissipation

OCT with a reduced set of states... with dissipation

OCT with a reduced set of states... with dissipation

Optimized dynamics

Example 2: Optimization of a Transmon Gate

Two Coupled Transmon Qubits

J. Koch et al. PRA 76, 042319 (2007)

A. Blais et al. PRA 75, 032329 (2007)

Two Coupled Transmon Qubits

J. Koch et al. PRA 76, 042319 (2007)

Aret tradicture to the the the

A. Blais et al. PRA 75, 032329 (2007)

Full Hamiltonian

$$\begin{split} \hat{\mathbf{H}} &= \underbrace{\omega_{c} \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}}_{(1)} + \underbrace{\omega_{1} \hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{b}}_{1} + \omega_{2} \hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{b}}_{2}}_{(2)} - \underbrace{\frac{1}{2} (\alpha_{1} \hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{b}}_{1} \hat{\mathbf{b}}_{1} + \alpha_{2} \hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{b}}_{2} \hat{\mathbf{b}}_{2} \hat{\mathbf{b}}_{2})}_{(3)} + \\ &+ \underbrace{g_{1} (\hat{\mathbf{b}}_{1}^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_{1} \hat{\mathbf{a}}^{\dagger}) + g_{2} (\hat{\mathbf{b}}_{2}^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_{2} \hat{\mathbf{a}}^{\dagger})}_{(4)} + \underbrace{\epsilon^{*}(t) \hat{\mathbf{a}} + \epsilon(t) \hat{\mathbf{a}}^{\dagger}}_{(5)} \end{split}$$

Effective Hamiltonian

$$\begin{split} \hat{\mathbf{H}}_{\text{eff}} &= \sum_{q=1,2} \sum_{i=0}^{N_q-1} (\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + \sum_{q=1,2} \sum_{i=0}^{N_q-1} g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) \\ &+ \sum_{ij} J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + \hat{\mathbf{C}}_i^{+(1)} \hat{\mathbf{C}}_j^{-(2)}). \end{split}$$

Effective Hamiltonian

$$\begin{split} \hat{\mathbf{H}}_{\text{eff}} &= \sum_{q=1,2} \sum_{i=0}^{N_q-1} (\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + \sum_{q=1,2} \sum_{i=0}^{N_q-1} g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) \\ &+ \sum_{ij} J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + \hat{\mathbf{C}}_i^{+(1)} \hat{\mathbf{C}}_j^{-(2)}) \,. \end{split}$$

with

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity $lpha_2$	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 μs, 32.0 μs
qubit 1,2 dephasing time T_2^st	29.5 μ s, 16.0 μ s

Effective Hamiltonian

$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + c.c.) \right)$$

Master Equation

$$\mathcal{L}_{D}(\hat{\boldsymbol{\rho}}) = \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} i D\left[|i-1\rangle \langle i|_{q} \right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i} D\left[|i\rangle \langle i|_{q} \right] \hat{\boldsymbol{\rho}} \right) ,$$

with $D\left[\hat{\mathbf{A}} \right] \hat{\boldsymbol{\rho}} = \hat{\mathbf{A}} \hat{\boldsymbol{\rho}} \hat{\mathbf{A}}^{\dagger} - \frac{1}{2} \left(\hat{\mathbf{A}}^{\dagger} \hat{\mathbf{A}} \hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\rho}} \hat{\mathbf{A}}^{\dagger} \hat{\mathbf{A}} \right)$

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity $lpha_2$	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 μs, 32.0 μs
qubit 1,2 dephasing time T_2^st	29.5 μ s, 16.0 μ s

■ Near resonance of α₁ with ω₁ − ω₂

Effective Hamiltonian

$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + c.c.) \right)$$

Master Equation

$$\mathcal{L}_{D}(\hat{\boldsymbol{\rho}}) = \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} iD\left[|i-1\rangle\langle i|_{q} \right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i}D\left[|i\rangle\langle i|_{q} \right] \hat{\boldsymbol{\rho}} \right),$$

with $D\left[\hat{\mathbf{A}} \right] \hat{\boldsymbol{\rho}} = \hat{\mathbf{A}}\hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger} - \frac{1}{2} \left(\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}}\hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\rho}}\hat{\mathbf{A}}^{\dagger}\hat{\mathbf{A}} \right)$

IBM Qubit - Poletto et al. PRL 109, 240505 (2012)

qubit frequency ω_1	4.3796 GHz
qubit frequency ω_2	4.6137 GHz
drive frequency ω_d	4.4985 GHz
anharmonicity α_1	-239.3 MHz
anharmonicity $lpha_2$	-242.8 MHz
effective qubit-qubit coupling J	-2.3 MHz
qubit 1,2 decay time T_1	38.0 μs, 32.0 μs
qubit 1,2 dephasing time T_2^st	29.5 μ s, 16.0 μ s

- Near resonance of α₁ with ω₁ − ω₂
- single frequency drive centered between two qubits

Effective Hamiltonian

$$\hat{\mathbf{H}}_{\text{eff}} = \sum_{ijq} \left((\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + g_i^{\text{eff}(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+(q)} + \hat{\mathbf{C}}_i^{-(q)}) + J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-(1)} \hat{\mathbf{C}}_j^{+(2)} + c.c.) \right)$$

Master Equation

$$\mathcal{L}_{D}(\hat{\boldsymbol{\rho}}) = \sum_{q=1,2} \left(\gamma_{q} \sum_{i=1}^{N-1} iD\left[|i-1\rangle \langle i|_{q} \right] \hat{\boldsymbol{\rho}} + \gamma_{\phi,q} \sum_{i=0}^{N-1} \sqrt{i}D\left[|i\rangle \langle i|_{q} \right] \hat{\boldsymbol{\rho}} \right) ,$$

with $D\left[\hat{\mathbf{A}} \right] \hat{\boldsymbol{\rho}} = \hat{\mathbf{A}} \hat{\boldsymbol{\rho}} \hat{\mathbf{A}}^{\dagger} - \frac{1}{2} \left(\hat{\mathbf{A}}^{\dagger} \hat{\mathbf{A}} \hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\rho}} \hat{\mathbf{A}}^{\dagger} \hat{\mathbf{A}} \right)$

OCT with a reduced set of states

full dissipation

Michael Goerz • Uni Kassel

OCT with a reduced set of states

full dissipation

weak dissipation

Optimized Pulse

Population Dynamics

 $\Psi(t=0) = |11\rangle$

Part II Ongoing Projects

Part II Ongoing Projects

Optimizing a Rydberg Gate for Robustness

OCT for Superconducting Qubits

Optimizing a Rydberg Gate for Robustness

M. Goerz, E. Halperin, J. Aytac, C.P. Koch, K.B. Whaley. Robustness of high-fidelity Rydberg gates with single-site addressability. In preparation.

Jaksch-Zoller Scheme

- blockade regime ($|rr\rangle$ blocked)
- single-site addressability (4 pulses)

Jaksch-Zoller Scheme

- blockade regime (|rr> blocked)
- single-site addressability (4 pulses)

Analytical pulse scheme: Jaksch et al. PRL 85, 2208 (2000)

	π -flip (I)		2π -flip (r)		π -flip (I)	
$ 00\rangle$	\rightarrow	$i r0\rangle$	\rightarrow	$i r0\rangle$	\rightarrow	$-\left 00 ight angle$
10 angle	\rightarrow	$ 10\rangle$	\rightarrow	$-\left 10 ight angle$	\rightarrow	$-\ket{10}$
01 angle	\rightarrow	$i\ket{r1}$	\rightarrow	$i \ket{r1}$	\rightarrow	$-\ket{01}$
$ 11\rangle$	\rightarrow	$ 11\rangle$	\rightarrow	$ 11\rangle$	\rightarrow	$ 11\rangle$

3-Level Transfer

Simultaneous pulses:

Problems:

■ Simultaneous pulses: short (strong) pulses break blockage; population in |i⟩

3-Level Transfer

Simultaneous pulses:

Problems:

- Simultaneous pulses: short (strong) pulses break blockage; population in |i⟩
- STIRAP: adiabaticity (slow); phase alignment is difficult

3-Level Transfer

Simultaneous pulses:

Problems:

- Simultaneous pulses: short (strong) pulses break blockage; population in |i⟩
- STIRAP: adiabaticity (slow); phase alignment is difficult

Mixed scheme: STIRAP is fine for π -pulses, just not for the 2π pulse

Robustness of Analytical Schemes

FIG. 10: Robustness of the Rydberg gate with respect to twophoton detuning for small detuning (top) and large detuning (bottom). All fluctuations are again assumed to be Gaussian distributed.

Optimizing for Robustness

Optimizing of an Ensemble of Hamiltonians

- \blacksquare fluctuations in pulse amplitude \rightarrow fluctuations in dipole
- fluctuations in Rydberg level (external fields)

$$\Delta \epsilon(t) \propto \sum_{i=1}^n \left\langle \chi_i(t) \left| \partial_\epsilon \hat{\mathbf{H}} \right| \Psi_i(t)
ight
angle$$

Optimizing for Robustness

Optimizing of an Ensemble of Hamiltonians

- \blacksquare fluctuations in pulse amplitude \rightarrow fluctuations in dipole
- fluctuations in Rydberg level (external fields)
- $\Rightarrow \ \boldsymbol{\hat{H}} \rightarrow \text{ensemble} \ \{\boldsymbol{\hat{H}}_e\}$

$$\Delta \epsilon(t) \propto \sum_{e=1}^{N} \sum_{i=1}^{n} \left\langle \chi_{i,e}(t) \left| \partial_{\epsilon} \hat{\mathbf{H}}_{e} \right| \Psi_{i,e}(t) \right\rangle$$

Optimizing for Robustness

Optimizing of an Ensemble of Hamiltonians

- \blacksquare fluctuations in pulse amplitude \rightarrow fluctuations in dipole
- fluctuations in Rydberg level (external fields)
- $\Rightarrow \ \boldsymbol{\hat{H}} \rightarrow \text{ensemble} \ \{\boldsymbol{\hat{H}}_e\}$

$$\Delta \epsilon(t) \propto \sum_{e=1}^{N} \sum_{i=1}^{n} \left\langle \chi_{i,e}(t) \left| \partial_{\epsilon} \hat{\mathbf{H}}_{e} \right| \Psi_{i,e}(t) \right\rangle$$

Optimized Robust Pulse

optimized pulses

population dynamics

OCT for Superconducting Qubits

Two Coupled Transmon Qubits

A. Blais et al. PRA 75, 032329 (2007)

Full Hamiltonian

$$\begin{split} \hat{\mathbf{H}} &= \omega_c \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \omega_1 \hat{\mathbf{b}}_1^{\dagger} \hat{\mathbf{b}}_1 + \omega_2 \hat{\mathbf{b}}_2^{\dagger} \hat{\mathbf{b}}_2 - \frac{1}{2} (\alpha_1 \hat{\mathbf{b}}_1^{\dagger} \hat{\mathbf{b}}_1^{\dagger} \hat{\mathbf{b}}_1 \hat{\mathbf{b}}_1 + \alpha_2 \hat{\mathbf{b}}_2^{\dagger} \hat{\mathbf{b}}_2^{\dagger} \hat{\mathbf{b}}_2 \hat{\mathbf{b}}_2) \\ &+ g_1 (\hat{\mathbf{b}}_1^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_1 \hat{\mathbf{a}}^{\dagger}) + g_2 (\hat{\mathbf{b}}_2^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_2 \hat{\mathbf{a}}^{\dagger}) + \epsilon^* (t) \hat{\mathbf{a}} + \epsilon(t) \hat{\mathbf{a}}^{\dagger} \end{split}$$

Effective Hamiltonian

$$\begin{split} \hat{\mathbf{H}}_{\text{eff}} &= \sum_{q=1,2} \sum_{i=0}^{N_q-1} (\omega_i^{(q)} + \chi_i^{(q)}) \hat{\mathbf{\Pi}}_i^{(q)} + \sum_{q=1,2} \sum_{i=0}^{N_q-1} g_i^{\text{eff}\,(q)} \epsilon(t) (\hat{\mathbf{C}}_i^{+\,(q)} + \hat{\mathbf{C}}_i^{-\,(q)}) \\ &+ \sum_{ij} J_{ij}^{\text{eff}} (\hat{\mathbf{C}}_i^{-\,(1)} \hat{\mathbf{C}}_j^{+\,(2)} + \hat{\mathbf{C}}_i^{+\,(1)} \hat{\mathbf{C}}_j^{-\,(2)}). \end{split}$$

Dynamic Stark Shift on Qubit Levels

Possible gate mechanism: Non-linear Stark shift on logical levels
 Interaction Energy E₀₀ - E₁₀ - E₀₁ + E₁₁

Summary and Outlook

Efficient optimization of gates in open quantum systems:

- A set of three density matrices is sufficient for gate optimization: (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases
- Further reduction possible for restricted systems
- States can be weighted according to physical interpretation

Summary and Outlook

Efficient optimization of gates in open quantum systems:

- A set of three density matrices is sufficient for gate optimization: (independent of dimension of Hilbert space!)
 - one to check dynamical map on subspace
 - one to check the basis
 - one to check the phases
- Further reduction possible for restricted systems
- States can be weighted according to physical interpretation

Ongoing Projects:

- Optimizing for robustness is possible by optimizing over an ensemble of Hamiltonians
- Superconducting Qubits: Gate Mechanism... Controlled-Phase gates through non-linear Start shifts?

Thank You!