Introduction to Circuit QED

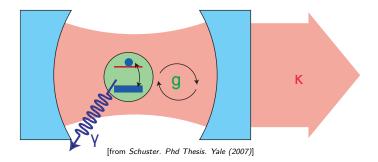
Michael Goerz

ARL Quantum Seminar November 10, 2015

Michael Goerz

Intro to cQED

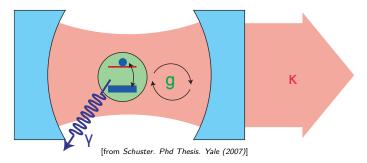
Jaynes-Cummings model



Jaynes-Cumming Hamiltonian

$$\mathbf{\hat{H}} = rac{\omega_a}{2} \mathbf{\hat{\sigma}}_z + \omega_c \mathbf{\hat{a}}^{\dagger} \mathbf{\hat{a}} + g \left(\mathbf{\hat{a}} \mathbf{\hat{\sigma}}_+ + \mathbf{\hat{a}}^{\dagger} \mathbf{\hat{\sigma}}_-
ight)$$

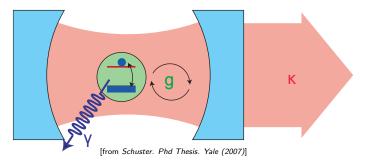
outline



Outline

- **1** Superconducting qubits
- 2 Coplanar waveguide resonators
- Combined system

outline



Outline

- Superconducting qubits
- 2 Coplanar waveguide resonators
- 3 Combined system
- 4 Towards a network description of superconducting circuits

superconducting circuits and qubits

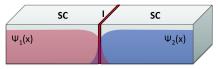
SC circuit toolbox: capacitors, inductors, Josephson elements

SC circuit toolbox: capacitors, inductors, Josephson elements **Josephson junction**



[from Shalibo. Phd Thesis. H. U. Jerusalem (2012)]

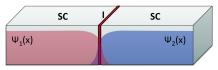
SC circuit toolbox: capacitors, inductors, Josephson elements Josephson junction



[from Shalibo. Phd Thesis. H. U. Jerusalem (2012)]

capacitance

SC circuit toolbox: capacitors, inductors, Josephson elements **Josephson junction**



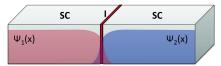
[from Shalibo. Phd Thesis. H. U. Jerusalem (2012)]

capacitance

tunneling

$$I(t) = I_C \sin(\phi(t)); \ U(t) = \frac{\hbar}{2e} \frac{\partial \phi}{\partial t}$$

SC circuit toolbox: capacitors, inductors, Josephson elements **Josephson junction**



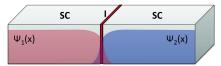
[from Shalibo. Phd Thesis. H. U. Jerusalem (2012)]

- capacitance
- tunneling

$$I(t) = I_C \sin(\phi(t)); \ U(t) = \frac{\hbar}{2e} \frac{\partial \phi}{\partial t}$$

$$\hat{\mathbf{H}} = \frac{(2e)^2}{2C_J} \left(\hat{\mathbf{n}} - \frac{Q_r}{2e}\right)^2 - \frac{\phi_0^2}{L_J} \cos \hat{\boldsymbol{\theta}}$$

SC circuit toolbox: capacitors, inductors, Josephson elements **Josephson junction**



[from Shalibo. Phd Thesis. H. U. Jerusalem (2012)]

- capacitance
- tunneling

$$I(t) = I_C \sin(\phi(t)); \ U(t) = \frac{\hbar}{2e} \frac{\partial \phi}{\partial t}$$

$$\mathbf{\hat{H}} = \frac{(2e)^2}{2C_J} \left(\mathbf{\hat{n}} - \frac{Q_r}{2e}\right)^2 - \frac{\phi_0^2}{L_J} \cos \mathbf{\hat{\theta}}$$

cf. LC resonator

$$H = \frac{q^2}{2C} + \frac{\phi^2}{2L}$$

SC circuit toolbox: capacitors, inductors, Josephson elements Josephson junction

[from Shalibo. Phd Thesis. H. U. Jerusalem (2012)]

- capacitance
- tunneling

$$I(t) = I_C \sin(\phi(t)); \ U(t) = \frac{\hbar}{2e} \frac{\partial \phi}{\partial t}$$

$$\mathbf{\hat{H}} = \frac{(2e)^2}{2C_J} \left(\mathbf{\hat{n}} - \frac{Q_r}{2e}\right)^2 - \frac{\phi_0^2}{L_J} \cos \mathbf{\hat{\theta}}$$

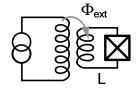
cf. LC resonator

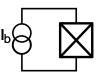
$$H = \frac{q^2}{2C} + \frac{\phi^2}{2L}$$

- superconductivity: macroscopic quantum coherence
- Josephson effect: *anharmonic* oscillator

types of superconducting qubits

standard SC qubits: charge qubit, flux qubit, phase qubit



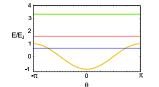


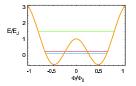
 $E_1 \gg E_C$

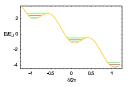
 $E_C > E_J$

 $E_1 > E_C$

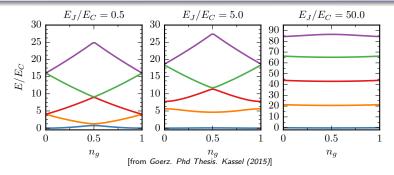
[from Devoret et al. arXiv:0411174 (2004)]



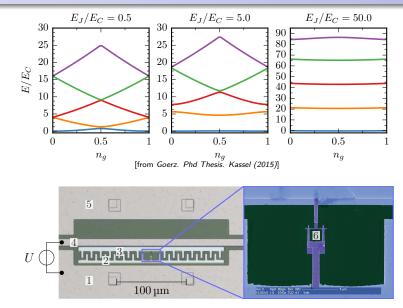




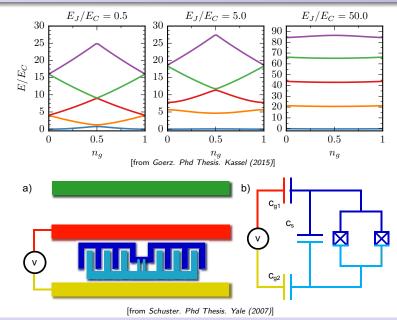
transmon qubit



transmon qubit



transmon qubit



Anharmonic Oscillator

$$\mathbf{\hat{H}} = 4E_C(\mathbf{\hat{n}} - n_g)^2 - E_J\cos\mathbf{\hat{\phi}} \quad \text{for}E_J \gg E_C$$

Anharmonic Oscillator

$$\mathbf{\hat{H}} = 4E_C(\mathbf{\hat{n}} - n_g)^2 - E_J\cos\mathbf{\hat{\phi}} \quad \text{for}E_J \gg E_C$$

• Expand $\cos \hat{\phi}$ to $1 - \frac{\phi^2}{2} + \frac{\phi^4}{24}$, using HO $\hat{\mathbf{b}}^{\dagger}$, $\hat{\mathbf{b}}$ (Duffing Oscillator)

$$\mathbf{\hat{H}} = \sqrt{8E_{C}E_{J}}\,\mathbf{\hat{b}}^{\dagger}\mathbf{\hat{b}} - \frac{E_{C}}{12}\left(\mathbf{\hat{b}}^{\dagger} + \mathbf{\hat{b}}\right)^{4} + \text{const}$$

Anharmonic Oscillator

$$\mathbf{\hat{H}} = 4E_C(\mathbf{\hat{n}} - n_g)^2 - E_J\cos{\hat{\phi}}$$
 for $E_J \gg E_C$

• Expand $\cos \hat{\phi}$ to $1 - \frac{\phi^2}{2} + \frac{\phi^4}{24}$, using HO $\hat{\mathbf{b}}^{\dagger}$, $\hat{\mathbf{b}}$ (Duffing Oscillator) $\hat{\mathbf{H}} = \sqrt{8E_CE_J}\,\hat{\mathbf{b}}^{\dagger}\hat{\mathbf{b}} - \frac{E_C}{12}\,\left(\hat{\mathbf{b}}^{\dagger} + \hat{\mathbf{b}}\right)^4 + \text{const.}$

Leading order perturbation theory on quartic term:

$$\hat{\mathbf{H}} = \omega_q \hat{\mathbf{b}}^{\dagger} \hat{\mathbf{b}} + \frac{\alpha}{2} \hat{\mathbf{b}}^{\dagger} \hat{\mathbf{b}}^{\dagger} \hat{\mathbf{b}} \hat{\mathbf{b}}$$

with
$$\omega_q \approx \sqrt{8E_JE_C}$$
, $\alpha \approx -E_c$

Anharmonic Oscillator

$$\mathbf{\hat{H}} = 4E_C(\mathbf{\hat{n}} - n_g)^2 - E_J\cos{\hat{\phi}}$$
 for $E_J \gg E_C$

• Expand
$$\cos \hat{\phi}$$
 to $1 - \frac{\phi^2}{2} + \frac{\phi^4}{24}$, using HO $\hat{\mathbf{b}}^{\dagger}$, $\hat{\mathbf{b}}$ (Duffing Oscillator)
 $\hat{\mathbf{H}} = \sqrt{8E_C E_J} \hat{\mathbf{b}}^{\dagger} \hat{\mathbf{b}} - \frac{E_C}{12} \left(\hat{\mathbf{b}}^{\dagger} + \hat{\mathbf{b}} \right)^4 + \text{const.}$

• Leading order perturbation theory on quartic term:

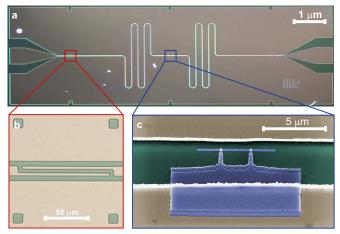
$$\mathbf{\hat{H}} = \omega_q \mathbf{\hat{b}}^{\dagger} \mathbf{\hat{b}} + rac{lpha}{2} \mathbf{\hat{b}}^{\dagger} \mathbf{\hat{b}}^{\dagger} \mathbf{\hat{b}} \mathbf{\hat{b}}$$

with
$$\omega_q \approx \sqrt{8E_JE_C}$$
, $\alpha \approx -E_c$.

Example: $\alpha = -300$ MHz, $E_J/E_C = 50$, $\omega_q = 6$ GHz

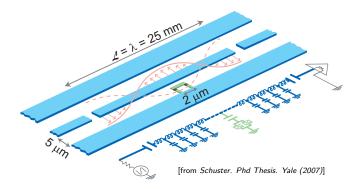
Coplanar Waveguide Resonantors

coplanar waveguide resonator



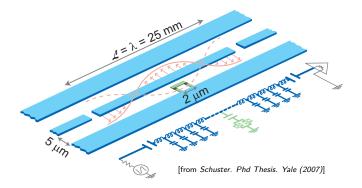
[from Schuster. Phd Thesis. Yale (2007)]

distributed element description



microwave pulses \Rightarrow lump element description inaccurate

distributed element description



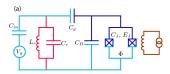
microwave pulses \Rightarrow lump element description inaccurate

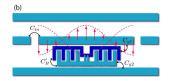
\Rightarrow series of infinitessimal LC circuits

see Blais et al, PRA 69, 062320 (2004)

combined system

coupling the transmon to a cavity





from: J. Koch. PRA 76, 042319 (2007)

Jaynes-Cummings Hamiltonian

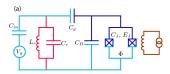
TLS in an optical cavity

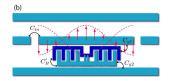
$$\mathbf{\hat{H}} = \omega_c \mathbf{\hat{a}}^{\dagger} \mathbf{\hat{a}} + \frac{\omega_q}{2} \mathbf{\hat{\sigma}}^+ \mathbf{\hat{\sigma}}^- + g\left(\mathbf{\hat{a}} + \mathbf{\hat{a}}^{\dagger}\right) \left(\mathbf{\hat{\sigma}}^- + \mathbf{\hat{\sigma}}^+\right)$$

RWA if $\omega_c - \omega_q \ll \omega_c + \omega_q$:

$$\mathbf{\hat{H}} = \omega_c \mathbf{\hat{a}}^{\dagger} \mathbf{\hat{a}} + rac{\omega_q}{2} \mathbf{\hat{\sigma}}^+ \mathbf{\hat{\sigma}}^- + g\left(\mathbf{\hat{a}} \mathbf{\hat{\sigma}}^+ + \mathbf{\hat{a}}^{\dagger} \mathbf{\hat{\sigma}}^-\right)$$

coupling the transmon to a cavity





from: J. Koch. PRA 76, 042319 (2007)

Jaynes-Cummings Hamiltonian

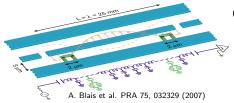
TLS in an optical cavity

$$\mathbf{\hat{H}} = \omega_c \mathbf{\hat{a}}^{\dagger} \mathbf{\hat{a}} + \frac{\omega_q}{2} \mathbf{\hat{\sigma}}^+ \mathbf{\hat{\sigma}}^- + g\left(\mathbf{\hat{a}} + \mathbf{\hat{a}}^{\dagger}\right) \left(\mathbf{\hat{\sigma}}^- + \mathbf{\hat{\sigma}}^+\right)$$

RWA if $\omega_c - \omega_q \ll \omega_c + \omega_q$:

$$\hat{\mathbf{H}} = \omega_c \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \omega_q \hat{\mathbf{b}}^{\dagger} \hat{\mathbf{b}} + \frac{\alpha}{2} \hat{\mathbf{b}}^{\dagger} \hat{\mathbf{b}}^{\dagger} \hat{\mathbf{b}} \hat{\mathbf{b}} + g \left(\hat{\mathbf{a}} \hat{\mathbf{b}}^{\dagger} + \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{b}} \right)$$

two coupled transmon qubits



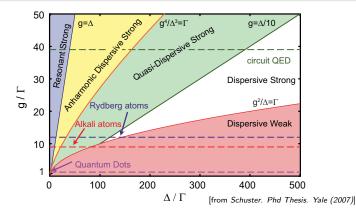
Cavity mediates

- driven excitation of qubit
- interaction between left and right qubit

Full Hamiltonian

$$\begin{split} \hat{\mathbf{H}} &= \underbrace{\omega_c \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}}_{(1)} + \underbrace{\omega_1 \hat{\mathbf{b}}_1^{\dagger} \hat{\mathbf{b}}_1 + \omega_2 \hat{\mathbf{b}}_2^{\dagger} \hat{\mathbf{b}}_2}_{(2)} - \underbrace{\frac{1}{2} (\alpha_1 \hat{\mathbf{b}}_1^{\dagger} \hat{\mathbf{b}}_1^{\dagger} \hat{\mathbf{b}}_1 \hat{\mathbf{b}}_1 + \alpha_2 \hat{\mathbf{b}}_2^{\dagger} \hat{\mathbf{b}}_2^{\dagger} \hat{\mathbf{b}}_2 \hat{\mathbf{b}}_2)}_{(3)} + \\ &+ \underbrace{g_1 (\hat{\mathbf{b}}_1^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_1 \hat{\mathbf{a}}^{\dagger}) + g_2 (\hat{\mathbf{b}}_2^{\dagger} \hat{\mathbf{a}} + \hat{\mathbf{b}}_2 \hat{\mathbf{a}}^{\dagger})}_{(4)} + \underbrace{\epsilon^*(t) \hat{\mathbf{a}} + \epsilon(t) \hat{\mathbf{a}}^{\dagger}}_{(5)} \end{split}$$

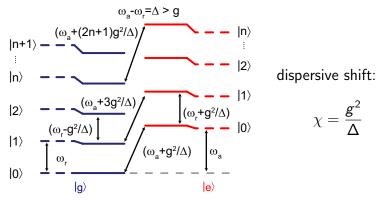
parameter regimes



• dispersive: $g \ll \Delta$

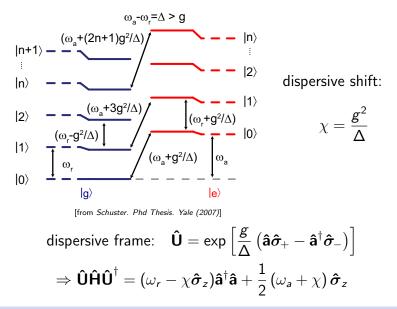
strong coupling: $g \gg \Gamma$ $\begin{array}{c|cccc} & 3 \text{D optical} & 1 \text{D circuit} \\ \hline \omega_r/2\pi & 350 \text{ THz} & 10 \text{ GHz} \\ g/2\pi, g/\omega_r & 220 \text{ MHz}, 10^{-7} & 100 \text{ MHz}, 10^{-2} \\ 1/\kappa, \ Q = \frac{\omega_r}{\kappa} & 10 \text{ ns}, 10^6 & 1 \text{ µs}, 10^4 \\ 1/\gamma & 50 \text{ ns} & 10 \text{ µs} \end{array}$

dispersive frame



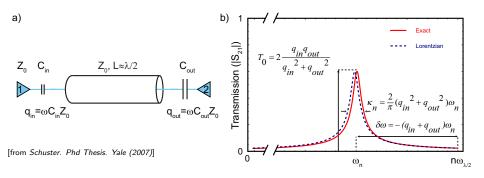
[from Schuster. Phd Thesis. Yale (2007)]

dispersive frame



towards a network description of superconducting circuits

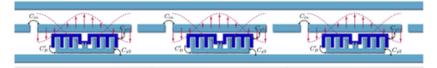
transmission properties of resonator



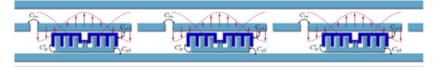
Impedance mismatch at capacitor acts as mirror

Input/Output behavior given by scattering matrix (transmission + reflection)

arrays of cavities?

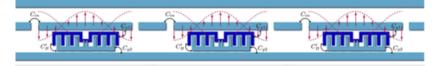


arrays of cavities?



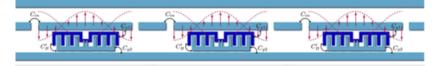
■ beam splitters ⇒ capacitive junctions (back-reflection!)

arrays of cavities?



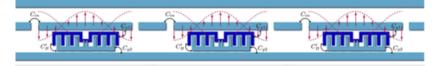
beam splitters ⇒ capacitive junctions (back-reflection!)
 phase shifters?

arrays of cavities?



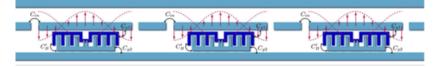
- beam splitters ⇒ capacitive junctions (back-reflection!)
- phase shifters?
- T-junctions

arrays of cavities?



- beam splitters ⇒ capacitive junctions (back-reflection!)
- phase shifters?
- T-junctions
- . . .

arrays of cavities?



- beam splitters ⇒ capacitive junctions (back-reflection!)
- phase shifters?
- T-junctions
- ...

 \Rightarrow electrical engineering methods for microwave engineering Book: D. Pozar. Microwave Engineering 4th Ed. Wiley (2012).

SC circuit toolbox:

capacitances, inductors, Josephson elements

SC circuit toolbox:

capacitances, inductors, Josephson elements

• circuits yield $\hat{\mathbf{H}}$ in canonical variables charge, flux

SC circuit toolbox:

capacitances, inductors, Josephson elements

- circuits yield $\hat{\mathbf{H}}$ in canonical variables charge, flux
- transmon qubit: Duffing oscillator, robust to noise

SC circuit toolbox:

capacitances, inductors, Josephson elements

- circuits yield $\hat{\mathbf{H}}$ in canonical variables charge, flux
- transmon qubit: Duffing oscillator, robust to noise
- cavity: coplanar waveguide oscillator

- SC circuit toolbox:
 - capacitances, inductors, Josephson elements
- circuits yield $\hat{\mathbf{H}}$ in canonical variables charge, flux
- transmon qubit: Duffing oscillator, robust to noise
- cavity: coplanar waveguide oscillator
- transmission lines: distributed element description

- SC circuit toolbox:
 - capacitances, inductors, Josephson elements
- circuits yield $\hat{\mathbf{H}}$ in canonical variables charge, flux
- transmon qubit: Duffing oscillator, robust to noise
- cavity: coplanar waveguide oscillator
- transmission lines: distributed element description
- Outlook: theory of microwave engineering may provide network description

- SC circuit toolbox:
 - capacitances, inductors, Josephson elements
- **\blacksquare** circuits yield $\hat{\mathbf{H}}$ in canonical variables charge, flux
- transmon qubit: Duffing oscillator, robust to noise
- cavity: coplanar waveguide oscillator
- transmission lines: distributed element description
- Outlook: theory of microwave engineering may provide network description

Thank you!